
Runtime Environment

DII COE I&RTS: Rev 2.0 October 23, 1995 5-1

5.0 Runtime Environment

This chapter describes the software configuration for the COE runtime
environment. All software and data, excepting low level components of the
bootstrap COE, are packaged as segments. A segment is a collection of one or
more CSCIs (Computer Software Configuration Items) most conveniently
managed as a unit. Segments are constructed to keep related CSCIs together so
that functionality may be easily included or excluded.

There are six types of segments corresponding to the different types of
components that may be added to a system:

1. COTS: A segment totally comprised of vendor software.

2. Data: A segment composed of a collection of data files for use by the
system or by a collection of segments.

3. Database: A segment that is to be installed on a database server under
the management of the DBMS, and ownership of the DBA.

4. Account Group: A segment which serves as a template for establishing
a runtime environment for individual operators.

5. Software: A collection of executables and static data which extend the
base functionality and environment established by an account group.

6. Patch: A segment containing a correction to apply to another segment,
whether data or software.

In addition, segments may have attached attributes which serve to further define
and classify the segment. There are four segment attributes:

1. Aggregate: A collection of segments grouped together and managed as
an indivisible unit.

2. Child: A segment which is part of an aggregate, but is subordinate to a
single segment designated as the parent. An aggregate can have
multiple child segments.

3. COE Component: A segment which implements functionality contained
within the COE, as opposed to a mission application segment.

4. Parent: The segment which is part of an aggregate that is considered to
be the "root" segment. The parent segment name is the name presented

Runtime Environment

5-2 October 23, 1995 DII COE I&RTS: Rev 2.0

to an operator as the name of the aggregate. An aggregate can have only
one parent segment.

Note: Technically, "aggregate" and "COE component" are attributes
of a segment. The terms are often used as if they represent segment
types. When discussing aggregate segments or COE component
segments, it is implicitly understood that there is an underlying
segment type, usually software.

Segment installation is accomplished in a disciplined way through instructions
contained in files provided with each segment. These files are called segment
descriptor files and are contained in a special subdirectory, SegDescrip, called
the segment descriptor subdirectory. Installation tools process the segment
descriptor files to create a carefully controlled approach to adding or deleting
segments to or from the system. The format and contents of the segment
descriptor files are the central topic of this chapter.

The segment concept and the strict rules which govern the COE and runtime
environment provide several benefits:

¥ Segment developers are decoupled and isolated from one another. Segments are
self contained within an assigned directory. Developers have maximum
freedom within the assigned segment directory, but minimum freedom
outside it. This allows multiple developers to work in parallel with
seamless integration after development.

¥ Extensions to the COE are coordinated through automated software tools. It is
not possible to create a single configuration of the COE that meets all
possible mission application or site unique requirements. However, the
COE tools make it possible to extend a base COE in a carefully controlled
way to ensure compatibility and identify segment dependencies and
conflicts.

¥ Compliance verification and installation can be automated. Standards without
automated validation are difficult to use in practice, especially in a
program where the system is large and there is a need to coordinate
activities from several different contractors, program sponsors, services,
and agencies. The COE approach to validation is closely related to
software installation so that automation of one directly leads to
automation techniques for the other.

¥ Mission application segments are isolated from the COE. System integration
problems are frequently a result of an undisciplined interaction between
software components, or because of tight coupling between components.

Runtime Environment

DII COE I&RTS: Rev 2.0 October 23, 1995 5-3

The COE controls interaction through APIs and isolates mission
applications from the COE component segments so that failure of one
mission application segment is less likely to affect another, or affect the
stability of the COE foundation itself.

Principles contained in this chapter are fundamental to the successful operation
of the COE, and COE compliance is largely measured by this chapter.
Developers are required to adhere to the procedures described herein to ensure
that segments can be installed and removed correctly, and that segments do not
adversely impact one another.

New Features

5-4 October 23, 1995 DII COE I&RTS: Rev 2.0

5.1 New Features

This DII COE release includes a number of improvements over previous COE
releases. A list of the more significant improvements is provided here for
developers who are already familiar with either the JMCIS or GCCS COE.

Modifications have been made for several reasons:

¥ to allow extension to non-Unix environments,
¥ to generalize the COE concept,
¥ to simplify or clarify certain segment descriptor files,
¥ to further reduce integration problems,
¥ to meet emerging requirements, and
¥ to leverage lessons learned.

The present release is completely backwards compatible with previous JMCIS
and GCCS COE releases. Segments presently in use do not need to be modified
to work with the features described here. However, certain features from
previous releases are now obsolete and support for them will eventually be
phased out. The tool VerifySeg will issue warnings when run against legacy
segments to identify obsolete features. Obsolete features are noted in the
subsections which follow in an "Obsolete" box.

¥ COE component segments are defined and installed in a special COE
directory

¥ SegInfo contains most segment information rather than individual
segment descriptor files

¥ Segment executables are stored in a bin subdirectory rather than a progs
subdirectory to conform to commercial practice

¥ Library modules are stored in a lib subdirectory rather than a libs
subdirectory to conform to commercial practice

¥ Segments may reserve space to allow room for growth

¥ Segments may request space on multiple disk partitions

¥ Segments may specify NFS mount points

¥ Segments may request system reboot after installation

¥ Segments may affect the user account creation/deletion process

New Features

DII COE I&RTS: Rev 2.0 October 23, 1995 5-5

¥ Segments may perform cleanup operations during the MakeInstall
process

¥ Segments are automatically compressed by MakeInstall

¥ PostInstall scripts may prompt operators during segment installation

¥ COEServices is extended to include other system services

¥ Icons and Menus are supported

¥ Local and remote segments are supported

¥ Character based interfaces are supported

¥ The COE contains a COTS license manager

¥ Variant definitions are supported

¥ A Processes descriptor file is supported

¥ #ifdef constructs are supported in segment descriptor files

¥ Unix file permissions and owner are set by the install tools

¥ New tools and extensions are described in an appendix

¥ A PC-based COE is supported and is described in an appendix

¥ Segments may use a boolean OR to specify segment dependencies so that
a dependency can be fulfilled by one or more segments

¥ Segments may request temporary disk space for use during the
installation process, but which will be deleted when the installation is
complete

¥ A new segment type is added to accomodate components that are to be
managed by the DBMS

Disk Directory Layout

5-6 October 23, 1995 DII COE I&RTS: Rev 2.0

5.2 Disk Directory Layout

This subsection describes the COE approach for a standardized disk directory
structure for all segments. A standardized approach is required to prevent two
segments from overwriting the same file, creating two different files with the
same name, or similar issues that cause integration problems. Unfortunately,
such problems are often not discovered until the system is operational in the
field.

In the COE approach, each segment is assigned its own unique, self contained
subdirectory. A segment is not allowed to directly modify any file or resource it
doesn't "own" - that is, outside its assigned directory. Files outside a segment's
directory are called community files. COE tools coordinate modification of all
community files at installation time, while APIs to the segments which own the
data are used at runtime.

Figure 5-1 shows the COE directory structure. The root level directory for the
COE is /h. Underneath /h, disk space is organized into the following categories
(note the close parallel to segment types):

COTS segment descriptors for installed COTS products

AcctGrps templates for establishing a runtime environment context

COE component segments constituting the COE

data subdirectory for shared (local and global) data files

Segments one or more subdirectories for mission application or other
segments

USERS operator home directories with operator specific items such as
preferences

TOOLS collection of useful tools for the development environment

Figure 5-1 does not show other important disk directories, such as the /etc
directory. The /etc directory is one of a family of related directories which
contain Unix system files. Other COTS products may require specific directories
as well.

Disk Directory Layout

DII COE I&RTS: Rev 2.0 October 23, 1995 5-7

h

COTS AcctGrps COE data GSORTS JCALS JOPES ... USERS TOOLS

RTE
Templates

shared
data

Operators

OS
Extensions

COE
Component
Segments

Mission Apps
&

Other Segments

Developers

Figure 5-1: COE Directory Structure

Developers may not alter or create files outside of their assigned segment
directory. COE compliance mandates strict adherence to this directive, with the
following exceptions:

1. Temporary files may be placed in the directory pointed to by TMPDIR
(typically /tmp). However, the operating system deletes files in this
directory at boot time, and disk space is limited. Developers must use
this temporary directory sparingly and shall delete temporary files
when an application is done.

2. Segments may place data files in the /h/data directory, and are
required to do so for shared data (see subsection 5.4.2 below).

3. Operator specific data files shall be placed in subdirectories underneath
/h/USERS (see subsection 5.2.2 below).

4. Files may be added to the /h/TOOLS directory. This is a community
directory for tools useful in the development process. Segments shall not
place any files in this directory which are required at runtime since this
directory is not installed at operational sites. This directory is described
in subsection 5.2.3.

5. Segments may request that the COE tools modify community files
during the installation process.

Disk Directory Layout

5-8 October 23, 1995 DII COE I&RTS: Rev 2.0

6. Segments may issue a request to modify a file to the segment which
"owns" the file. This shall be done through use of, and only through use
of, published public APIs.

As software is loaded onto the system, the /h disk partition may eventually run
out of disk space. The installation software will automatically create a symbolic
link to preserve the logical structure shown in Figure 5-1, and delete the link
when segments are removed. Hence, Figure 5-1 represents a logical view, not a
physical view, of file and directory locations. Due to the potential need to relocate
segments at installation time based on available disk space, COE compliant
segments must meet the following requirements:

¥ Segments shall use relative pathnames instead of absolute pathnames.

¥ Segments which use symbolic links to point to files contained within the
segment shall use relative pathnames for the link.

¥ Segments which use symbolic links to community files may use absolute
pathnames as long as (a) the segment can determine the community file's
location at install time and (b) the segment can resolve linking to a
community file which may itself be a symbolic link.

¥ Segments which add an environment variable to the account group's
global runtime environment for locating files within the segment shall use
a single "home" environment variable. Environment variables of this
nature are normally required only when the segment files are to be
accessible by other segments.

To illustrate the last requirement, consider a segment that provides a continuous
readout of time-until-impact for a missile. Assume the segment's assigned
directory is MissleTDA and it's segment prefix is MSLE. The ReqrdScripts
descriptor file (see below) is used to add the following to the account group's
.cshrc file:

setenv MSLE_HOME /h/MissleTDA

MSLE_HOME is called the segment's home environment variable. Static data within
the segment can be referenced by $MSLE_HOME/data while executables may be
referenced by $MSLE_HOME/bin. This technique of using relative pathnames
means that segments can be easily relocated at integration or installation time by
modifying a single environment variable.

The last requirement stated above does not apply to environment variables
defined for use purely within the software development environment. The COE
requires that the runtime environment be separated from the development

Disk Directory Layout

DII COE I&RTS: Rev 2.0 October 23, 1995 5-9

environment. This is typically done by separating environment variables and
other settings into physically separate files. The development environment is not
present during runtime for the operational system.

Also carefully note that the last requirement stated above applies only to the
account group's global runtime environment, not a local runtime environment.
When a segment executable is launched, it inherits the environment established
by the account group template. It may then add to its local runtime environment
through techniques equivalent to the C putenv function.

The time-to-impact example illustrates additional COE requirements regarding
definition of a home environment variable.

¥ A segment home environment variable shall point to the segment's home
subdirectory, not a lower level subdirectory. (e.g., /h/MissleTDA and
not /h/MissleTDA/Scripts)

¥ A segment home environment variable, if added to the global
environment, shall be added through an environment extension file (see
ReqrdScripts below).

¥ If a segment home environment variable is required, it shall be named
segprefix_HOME, where segprefix is the segment prefix. Segments
which use the same segment prefix must ensure that only one segment
defines a home environment variable. This requirement assures that home
environment variables are uniquely named between segments.

¥ Segments shall not define a global environment variable that can be
derived from an already defined environment variable. For example,

setenv MSL_DATA $MSL_HOME/data

is redundant and is therefore not allowed because the expression
$MSL_HOME/data can be used wherever $MSL_DATA can be used.

¥ Segments shall not use the "~" character to specify relative pathnames in
the runtime environment, whether to define a home environment variable
or any other environment variable.

Unix allows statements of the form

source ~/Scripts/.cshrc.tst

in .cshrc, .login, and similar scripts. The "~" character is substituted at run
time with the name of the home login directory (as defined in the /etc/passwd

Disk Directory Layout

5-10 October 23, 1995 DII COE I&RTS: Rev 2.0

file). Suppose this statement were contained in a .cshrc file and, to prevent
making duplicate copies and managing updates to this file, another segment
wishes to use the Unix source command to include this .cshrc file in its own
environment. Any segment wishing to source the example .cshrc file must
duplicate the same disk directory path structure (e.g., must have a Scripts
subdirectory underneath the home login directory) and must have a file called
.cshrc.tst underneath the Scripts subdirectory. This approach is
problematic in the runtime environment because the login home directory is
different for every operator, and leads to difficulties in sharing environment
settings.

Obsolete: Previous releases of the COE allowed several path
related environment variables to be defined in the environment
extension file such as

setenv MSL_HOME /h/MissleTDA
setenv MSL_DATA $MSL_HOME/data
setenv MSL_BIN $MSL_HOME/bin

The Full COE Compliance level limits segments to a single path
related environment variable in order to reduce the size of the
environment variable space, which is a scare system resource.

5.2.1 Segment Subdirectories

COE compliance mandates specific subdirectories and files underneath a
segment directory. These are shown in Figure 5-2 for a general segment. The
precise subdirectories and files required depend upon the segment type. For
example, a Scripts subdirectory is required for account group segments. The
Scripts subdirectory will normally contain, as a minimum, .cshrc,
.xsession, and .login scripts. These serve as a template for establishing a
basic runtime environment. For software segments, the Scripts subdirectory
contains environment extension files.

Some of the subdirectories shown in Figure 5-2 are required only for segment
submission and are not delivered to an operational site. Runtime subdirectories
normally required are as follows:

data subdirectory for static data items, such as menu items, that are
unique to the segment, but will be the same for all users on all
workstations

bin executable programs for the segment

Disk Directory Layout

DII COE I&RTS: Rev 2.0 October 23, 1995 5-11

Scripts directory containing script files

SegDescrip directory containing segment descriptor files.

Required for segment submission
Required for segments with public APIs

+

*

Seg

h

VSOutput TestSuite

IntgNotes

Icons Menus fonts app-defaults

Integ+dataSegDescrip Scripts bin lib*include*man*

Figure 5-2: Segment Directory Structure

Obsolete: Previous COE releases used a subdirectory named
progs instead of bin to store executables, and a subdirectory
libs instead of lib for storing object libraries. The progs and
libs convention are now obsolete in order to conform with
conventional usage. Both progs and libs will be maintained for
backwards compatibility for a short period of time.

The descriptor directory SegDescrip is always required for every segment. Its
contents are defined in later subsections. Segment developers may use arbitrary
disk file structures during the development phase, but segments shall conform to
the structure shown prior to submitting a segment to DISA. It is a violation of the
COE to use a different subdirectory name to fulfill the same purpose as any
subdirectory shown, or to use a different runtime directory structure than that
shown in Figure 5-2.

The distinction between the Scripts subdirectory and the bin subdirectory is
subtle. Files in the Scripts subdirectory are used to establish attributes of the
runtime environment. Scripts are used here in the sense of traditional Unix,
X Windows, or Motif files (.cshrc, .login, .xsession, .mwmrc, etc.) that are
usually referenced only during the login process, or in the establishment of a
separate runtime session. Files of this nature are located in the Scripts
subdirectory. Executable files may be created as a result of compiling a program,

Disk Directory Layout

5-12 October 23, 1995 DII COE I&RTS: Rev 2.0

or may be written as a shell. Files of this nature implement executable features of
the segment and are located in the bin subdirectory.

Subdirectories underneath data depend upon whether or not the segment has
menu or icon files, or needs additional fonts or app-defaults. During segment
installation, special processing is performed on files within the app-defaults
and fonts subdirectories. See subsection 5.4.2 below for more details.

The remaining subdirectories shown in Figure 5-2 are required in order to
submit a segment to DISA as follows:

include subdirectory containing header files for public APIs

lib subdirectory containing object code libraries for public APIs

man subdirectory containing Unix "man" pages for public APIs

Integ subdirectory containing items required by the integration
process

Segments which do not contain public APIs are not required to submit include,
lib, or man subdirectories. For those segments which submit public APIs,
private APIs are not allowed in the include subdirectory, nor are private
libraries allowed in the lib subdirectory.

The Integ subdirectory serves as a convenient repository for information that
needs to be communicated from the developer to the integrator. The file
VSOutput is required for all segments submitted. The subdirectory TestSuite
is required for all segments which submit public APIs and is to contain source
code for a program(s) which exercises all APIs submitted. The file IntgNotes is
required for all segments submitted and contains a brief description of why the
segment is being submitted (new features, bug fixes, etc.). It also contains any
special instructions that needs to be communicated to the integrator for proper
segment integration and installation.

5.2.2 USERS Subdirectories

The COE establishes individual operator login accounts and provides a separate
subdirectory on the disk for storing operator specific data items. Figure 5-3
shows the directory structure involved. This structure is created and managed
automatically as accounts are added or deleted by the Security Administrator
software. All users will have a subdirectory underneath /h/USERS. The
subdirectory name shall have the same name as the login account name. As
shown in Figure 5-3, operator accounts may be global or local in scope. A local

Disk Directory Layout

DII COE I&RTS: Rev 2.0 October 23, 1995 5-13

account is workstation specific, whereas global accounts are available from any
workstation on the LAN.

A special subdirectory, Profiles, is shown in Figure 5-3 underneath
/h/USERS/local and /h/USERS/global. This subdirectory contains local
and global profile information respectively for establishing what menus, icons,
and segments are available to operators belonging to the same profile. A profile
is defined for a single account group, but multiple profiles may be defined for
the same account group. Operators may thus participate in multiple profiles
from multiple account groups.

The file Segments underneath the Profiles subdirectory is a table listing all
segments that are active within the specific profile. The subdirectories Menus
and Icons contain menu and icon files that have been customized to include or
exclude segment functions based on how the profile was defined. The Scripts
subdirectory contains environmental settings that are to be inherited for the
given profile. In contrast to previous COE releases, the environment is
established, not by all segments loaded on the machine, but only by the active
segments for that profile.

local global

Profiles OperA OperB ...

Scriptsdata

Prefs

EM JMCIS GSORTS ...

LastProfile
UserProfiles

Profiles Oper1 Oper2 ...

h

USERS

Profile1 Profile2 ...

Segments

Menus Icons Scripts

Figure 5-3: Operator Directory Structure

When an operator account is created, certain structures are set up automatically.
The file UserProfiles is a list of the profiles that the specific operator is
authorized to use, and whether the profile is a local or global profile. This

Disk Directory Layout

5-14 October 23, 1995 DII COE I&RTS: Rev 2.0

approach provides the flexibility of assigning global accounts so that preferences
follow the operator, but the actual profile can be locally constrained to a
workstation for security or performance reasons. The file LastProfile is the
profile the operator was in when last logged out. It is an operator convenience
feature provided so that the last profile is automatically re-established when the
operator logs in again.

The Scripts directory created for operator logins serves two purposes. It uses
UserProfiles and LastProfile information to establish the runtime
environment context, and it provides a secure fail safe environment in case a
profile is unavailable. For example, if a global profile is unavailable because the
server is down, an error message is displayed to the user. The user is then either
prompted to select another profile from UserProfiles, or the operator is
logged out if no other profiles are available.

The subdirectory Prefs underneath the operator's data directory is used to store
segment specific operator preferences. COE compliance requires that segments
store all operator preference data here. A segment is responsible for creating its
own subdirectory, with the same name as the segment directory, and any
required files when the segment first references the preferences data. The exact
pathname for the Prefs subdirectory will change each time an operator logs in;
thus segment software shall use functions from the Preferences Toolkit APIs to
retrieve the correct pathname for the currently active operator account.

Account group segments define the environment variables USER_HOME and
USER_DATA to point to the correct operator directories. For the example in
Figure 5-3, the following assignments would be made:

USER_HOME = /h/USERS/global/OperA
USER_DATA = /h/USERS/global/OperA/data

Note that USER_HOME is not defined to be
/h/USERS/global/OperA/Scripts which is the login home directory.

Segments, such as the Executive Manager, may need to reference menu and icon
files for the operator's currently defined profile. However, the directory location
for these files is operator dependent and will change during a login session if the
operator changes profiles. Segments must use functions contained in the
Preferences Toolkit APIs to determine the current profile. The environment
variable USER_PROFILE is also set by the account group segment during login.
For example, assume that operator OperA in Figure 5-3 has been assigned the
local profile Profile2. Then the environment variable USER_PROFILE is set to

USER_PROFILE = /h/USERS/local/Profile2.

Disk Directory Layout

DII COE I&RTS: Rev 2.0 October 23, 1995 5-15

COE compliance requires adherence to the following:

¥ Segments shall create subdirectories as needed under the operator's
Prefs subdirectory for storing operator specific data.

¥ Segments shall account for an environment in which accounts are created
and deleted, so that a segment will need to create and initialize missing
data files that are operator specific.

¥ Account group segments shall set USER_HOME, USER_DATA, and
USER_PROFILE. No other segment shall set or alter these environment
variables.

¥ Segments shall determine the operator's directory and profile exclusively
through the Preferences Toolkit APIs, or the environment variables
USER_HOME, USER_DATA, and USER_PROFILE.

5.2.3 Developer Subdirectories

Software for the runtime environment is obtained by loading the desired mission
application segments and the required COE components. But the development
environment is provided separately as a Developer's Toolkit because it is not
delivered to, nor required at, an operational site. The Developer's Toolkit
includes object code libraries, header files which define the public APIs, and
various tools. By convention, tools are loaded underneath the /h/TOOLS
subdirectory shown in Figure 5-1. This serves as a convenient directory for
community contributed software for general development use.

Segment Prefixes and Reserved Symbols

5-16 October 23, 1995 DII COE I&RTS: Rev 2.0

5.3 Segment Prefixes and Reserved Symbols

Each segment is assigned a unique subdirectory underneath /h called the
segment's assigned directory. The assigned directory serves to uniquely identify
each segment, but it is too cumbersome for use in naming public symbols.
Therefore, each segment is also assigned a 1-6 character alphanumeric string
called the segment prefix. The segment prefix is used for naming environment
variables and in situations, such as public APIs and public libraries, where
naming conflicts with other segments must be avoided. All segments shall
preface their environment variables with segprefix_ where segprefix is the
segment's assigned prefix. For example, the Security Administrator account
group segment is assigned the segment prefix SSO. All environment variables
for this segment are therefore prefaced with the string "SSO_".

The segment prefix is also used to uniquely name executables. All COE
component segments shall use the segment prefix to name executables, and it is
strongly recommended that all segments follow the same convention. This
approach simplifies the task of determining the files that go with each segment
and reduces the probability of naming conflicts.

Note: Use the segment prefix inside application code in situations
where it is important to distinguish one segment from another. For
example, when audit information is written to the security audit
log, the segment prefix is also written to the audit log to allow
determination of which application module generated the
auditable event.

It is sometimes convenient for segments to share the same segment prefix. This is
true for aggregate segments, or for segments produced by the same contractor.
The COE allows segments to share the same segment prefix; however, the
burden for avoiding naming conflicts is placed on the segment developer.

The following segment prefixes are reserved:

CBIF Character Based I/F account group segment
CDE Common Desktop Environment segment
COE Common Operating Environment segment
DBA Database Administrator account group segment
DCE Distributed computing environment segment
DII Defense Information Infrastructure segment
ECEDI Electronic Commerce/Electronic Data Interchange segment
EM Executive Manager segment
GCCS Global Command and Control System segment
GCSS Global Command Support System segment

Segment Prefixes and Reserved Symbols

DII COE I&RTS: Rev 2.0 October 23, 1995 5-17

JCALS Joint Computer-Aided Acquisition and Logistics Support
segment

JMCIS Joint Maritime Command Information System segment
JMTK Joint Mapping Toolkit segment
MOTIF Motif
NIPS Navy NIPS segment
NT Windows NT segment
ORACLE Oracle COTS segment
OSS Navy OSS segment
SA System Administrator account group segment
SCO SCO-Unix segment
SSO Security Administrator account group segment
SYBASE Sybase COTS segment
TIMS Navy TIMS segment
UB Navy Unified Build segment
UNIX Unix operating system
USER prefix for operator specific items
WIN generic Windows segment
WIN95 Windows 95 segment
WINNT Windows NT segment
XWIN X Windows

The COE sets five environment variables that must not be confused with the
USER prefix or the segment home environment variable.

• The HOME environment variable is set by the operating system to be the
login directory; that is, the login directory as contained in the Unix
/etc/passwd file. This will normally point to a Scripts subdirectory
while the segment "home" environment variable (segprefix_HOME) is
usually one level up from HOME.

• The USER environment variable is set by the operating system to be the

login account name and does not refer to a directory as does the USER
prefix. In most cases, USER_HOME will be /h/USERS/$USER.

• The environment variables LOG_NAME, LOGNAME, and LOGIN_NAME are

equivalent to the USER environment variable, but are not always present
on every system.

The COE also includes a number of predefined environment variables that are
required by Unix, X Windows, or other COTS software. These environment
variables are either set automatically by the operating system, or they must be
set by an account group segment. Other segments shall not alter these

Segment Prefixes and Reserved Symbols

5-18 October 23, 1995 DII COE I&RTS: Rev 2.0

environment variables except as permitted by environment extension files (e.g.,
extending the path environment variable).

COE_SYS_NAME string containing system name (e.g., "GCCS")
*DATA_DIR /h/data
DISPLAY current display surface
HOME user's login directory
INSTALL_DIR absolute pathname for where segment was installed

(defined at install time only)
*LD_LIBRARY_PATH default location of shared X and Motif libraries
*LOGNAME user's login account name
*LOG_NAME user's login account name
*LOGIN_NAME user's login account name
*MACHINE machine name derived from uname -m
*MACHINE_CPU CPU type derived from uname -m
*MACHINE_OS Operating system derived from uname -s -r
path list of paths to search to find an executable
SHELL shell used (e.g., /bin/csh)
TERM terminal type
*TMPDIR location of the system defined temporary directory
*TZ time zone information
USER user's login account name
USER_DATA user's data directory under /h/USERS/local or

/h/USERS/global
USER_HOME user's home directory under /h/USERS/local or

/h/USERS/global
USER_PROFILE user's current profile under

/h/USERS/local/Profiles or
/h/USERS/global/Profiles

*XAPPLRESDIR /h/data/local/app-defaults
*XENVIRONMENT /h/data/local/app-defaults/COEBaseEnv
*XFONTSDIR /h/data/local/fonts

* These environment variables are set by the parent COE component
segment. The remaining are set by the applicable account group
segment.

The COE sets environment variables MACHINE, MACHINE_CPU, and
MACHINE_OS to define the hardware and operating system being used. This
allows scripts and descriptors to perform operations that are hardware or
operating system dependent. Listed below are the possible values set by the
COE which may be used as constants in #ifdef constructs within descriptor
files, or possible values for the appropriate environment variable.

MACHINE Environment Variable and Constants

Segment Prefixes and Reserved Symbols

DII COE I&RTS: Rev 2.0 October 23, 1995 5-19

HP defined for HP platforms running HP-UX
SOL defined for Sun Sparc workstations running Solaris
SUN defined for Sun 4 workstations running SunOS

MACHINE_CPU Environment Variable and Constants

HP700 defined for HP 700 series workstations
HP712 defined for HP712 workstations
HP715 defined for HP 715 workstations
HP750 defined for HP 750 workstations
HP755 defined for HP 755 workstations
PC386 defined for Intel 80386 workstations
PC486 defined for Intel 80486 workstations
PENTIUM defined for Intel Pentium workstations
SPARC defined for Sun Sparc workstations
SUN4 defined for Sun 4 workstations

MACHINE_OS Environment Variable and Constants

HPUX defined for HP-UX workstations
NT defined for Windows NT workstations
SCO defined for SCO Unix platforms
SOL defined for Solaris workstations
SUNOS defined for SunOS 4.3.x (non-Solaris) workstations
WIN31 defined for Windows 3.1 platforms
WIN95 defined for Windows 95 platforms

Additional Constants

HP defined for all HP platforms, regardless of OS
PC defined for all 80x86 platforms, regardless of OS
SPARC defined for all Sun Sparc workstations, regardless of OS
SUN4 defined for all Sun 4 workstations, regardless of OS

Note that the environment variables (e.g., MACHINE_CPU) will have one and
only one value, but several constants may be defined for use within the
descriptor files. For example, if the hardware platform is an HP715 running HP-
UX 9.01, the MACHINE environment variable will be set to HP, MACHINE_CPU
will be set to HP715, MACHINE_OS will be set to HPUX, while the constants HP,
HP715, HPUX will be defined for use in descriptors.

Segment Prefixes and Reserved Symbols

5-20 October 23, 1995 DII COE I&RTS: Rev 2.0

Obsolete: Earlier versions of the COE used a single environment
variable MACHINE to specify the hardware and operating system.
This has been replaced by two new environment variables,
MACHINE_CPU and MACHINE_OS. MACHINE will be maintained for
a short period of time to preserve backwards compatibility.

Segment Types and Attributes

DII COE I&RTS: Rev 2.0 October 23, 1995 5-21

5.4 Segment Types and Attributes

Segment types and attributes were briefly introduced at the beginning of
section 5.0. The present subsection describes segment types and attributes in
more detail. Segments are the cornerstone of the COE approach. Developers
have considerable freedom in building segments. However, there are some
important considerations regarding segments.

¥ Creation of an account group segment requires prior approval by the
DISA Chief Engineer. Account groups are predefined to establish COE
compliant runtime environments.

¥ Creation of a COE component segment requires prior approval by the
DISA Chief Engineer.

¥ All COTS products shall be packaged as individual COTS segments. This
requirement is mandated to make it easier to handle COTS licenses, and
to ensure that a single version of a COTS product is in use. Dependencies
on COTS product versions, such as PERL, must be identified and
coordinated with DISA to ensure that the proper version is supported by
the COE.

¥ Segments shall not modify any file that lies outside the segment's
directory. Community files may be modified only through public APIs or
through requests made to the COE installation tools.

5.4.1 COTS Segments

The COTS segment type is used to describe the installation of COTS products. If
a COTS product can be structured as a software segment, it should be. However,
this is usually not possible because where COTS products will be loaded, what
environment extensions are required, etc. are often vendor specific.

The COE must retain segment information about all segments, including COTS
products. The segment descriptor information for all COTS products is located
underneath the directory /h/COTS as shown in Figure 5-4. COTS software is not
actually stored in the directory /h/COTS, only the segment descriptor
information, because the actual location of COTS products is often spread across
several subdirectories (such as /usr, /usr/lib/X11, and /etc). Figure 5-4
shows the segment descriptor information for the operating system (UNIX), the
X Windows environment (XWindows), and the Motif window manager and
libraries (Motif). These three subdirectories, along with the actual COTS
software, are loaded with the kernel COE.

Segment Types and Attributes

5-22 October 23, 1995 DII COE I&RTS: Rev 2.0

h

COTS

UNIX XWindows Motif

SegDescripSegDescrip SegDescrip

Figure 5-4: COTS Directory Structure

The general approach to handling COTS segments is to create a temporary
segment structure in which to store the COTS product, copy the COTS files to
their proper location during installation, and then copy the segment descriptor
information to /h/COTS. It is the responsibility of the PostInstall script (see
below) to copy the COTS files to their appropriate directories and to perform any
other required initialization steps. The installation software handles moving the
segment descriptor information to the standard location, /h/COTS.

For example, assume a COTS product called SampleCots is to be installed
which requires loading a series of files into /etc (files f1, f2, and f3),
/usr/local (files f4 and f5), and /usr/lib (files f6, f7, f8, and f9). A
segment directory structure can be set up in whatever manner is most
convenient. Figure 5-5 shows one possible solution. The installation software
will load the segment SampleCots wherever there is room on the disk, and will
set the environment variable INSTALL_DIR to the absolute pathname for where
SampleCots was loaded. The PostInstall script for this example must
recursively copy the subdirectories etc and usr from INSTALL_DIR to /etc
and /usr. The installation software will copy the segment descriptor
information to /h/COTS/SampleCots and then delete all files underneath
INSTALL_DIR.

As an alternative, the COE allows a segment to specify exactly where it must be
loaded. This is done with the $HOME_DIR directive described in subsection 5.5
below. This reduces the need to copy files from one directory to another, and
reduces the disk space required during installation.

Segment Types and Attributes

DII COE I&RTS: Rev 2.0 October 23, 1995 5-23

h

SampleCots

SegDescrip

f1

f2

f3

etc usr

liblocal

f4

f5

f6

f7

f8

f9

Figure 5-5: Example COTS Segment Structure

The segment descriptor file FilesList (see below) is used to document where
a COTS product was installed. The FilesList descriptor for this example is

$PATH:/etc
$FILES
f1
f2
f3
$PATH:/usr
$FILES
local/f4
local/f5
lib/f6
lib/f7
lib/f8
lib/f9

To summarize the COTS segment type:

¥ COTS products should be installed as a software segment type if possible.

¥ The COTS segment's PostInstall script is responsible for copying files
to their required location. The PostInstall script must ensure that
enough space exists.

¥ The installation software places the segment descriptor information
underneath /h/COTS/name where name is the segment directory name
chosen for the temporary segment structure (SampleCots in the example
above).

Segment Types and Attributes

5-24 October 23, 1995 DII COE I&RTS: Rev 2.0

¥ The installation software automatically deletes the temporary segment
structure after installation is complete.

¥ COTS segments shall document what files are loaded and their location in
the FilesList segment descriptor file.

5.4.2 Data Segments

Data files are most often created explicitly at runtime by a segment, or loaded as
part of the segment itself. However, the ability to load data as a separate
segment is useful when there is classified data, optional data, or data that may
not be releasable to all communities. The COE supports five categories of data
grouped according to data scope, how the data is accessed, and where the data is
located:

Global Data in this category means that every workstation, every
application, and every operator on the LAN accesses and uses
exactly the same data. Global data is made available through
NFS mount points. Examples of global data include the track
database and message logs. Global data is located in
subdirectories underneath /h/data/global.

Database This category is similar to global data, but access to the data is
through a relational database manager. Examples of this kind
of data include intelligence databases, JOPES data, and
TPFDD files. Data is stored in a database server and is its own
segment type.

Local Local data is limited in scope to an individual workstation.
All workstation users and applications access the same data,
but the data may differ, and frequently will, from one
workstation to another. Examples include overlays, pimtracks,
and briefing slides, although the COE provides techniques for
exporting these to other workstations. Local data is located in
subdirectories underneath /h/data/local.

Segment Segment data is local to a workstation, but is managed and
accessed by a single software segment. This data is located
under the segment's data subdirectory and is typically static
data used for segment initialization.

Operator Data in this category is specific to an operator and is the most
limited in scope. Typical examples include preferences for

Segment Types and Attributes

DII COE I&RTS: Rev 2.0 October 23, 1995 5-25

map colors, location of various windows, and font size.
Operator data is stored in a data subdirectory underneath
/h/USERS created for the operator when the operator login
account is created, as described in subsection 5.2.2.

There are some important considerations with respect to these data categories:

¥ Data is not necessarily available to an operator or process even if the data
scope would otherwise permit it. Discretionary access controls within the
COE limit access based upon the security policy of the system.

¥ In some cases, data that could be global is replicated on every workstation
to improve system performance. For example, World Vector Shoreline
data is identical for everyone on the LAN, and hence meets the criteria for
the global data category. However, for efficiency, this data is replicated
on each workstation which requires maps and is thus considered local.

¥ Distinction is made between segment data and local data because it affects
where the data is stored on the disk. Local data is stored in a single place
to make it easier for doing data backups. Because segment data is
normally static, it does not need to be archived.

Segment data created at runtime or loaded as part of the segment does not
require any special consideration by the COE. The remainder of this subsection
will deal with the COE requirements for local and global data, and then present
an example of how a data segment is structured for local, global, and segment
scope.

global and local

Figure 5-6 shows the directory structure for global and local data. The COE
runtime environment sets the environment variable DATA_DIR to point to
/h/data. Segments shall use this environment variable to reference global or
local data. The segment which owns the local or global data is responsible for
creating and managing its data subdirectories underneath /h/data/local and
/h/data/global. Assuming the segment's assigned directory is SegDir, the
segment shall create a subdirectory of the form SegDir/data.

For example, suppose a segment that does ASW planning is located underneath
/h/ASW and it will create both global and local data. Then the ASW segment
must create subdirectory /h/data/local/ASW/data for local data and
subdirectory /h/data/global/ASW/data for global data.

The COE mandates that local and global data be structured in this fashion for the
following reasons:

Segment Types and Attributes

5-26 October 23, 1995 DII COE I&RTS: Rev 2.0

¥ Centralizing data makes it easier to archive and restore. A simple data
archive/restore utility can be created without needing to know how many
segments are loaded in the system.

¥ Separating data from software makes it simple to load the software
without destructively overwriting existing data. This is especially
important as segments are upgraded.

¥ Collecting all global data under a single directory reduces the number of
NFS mount points and improves overall network performance.

¥ Organizing data into a standard structure simplifies training and
simplifies determination of what data is loaded in the system.

h

data

fonts app-defaultslocal global

GSORTS ...

data

UB

data

EM ...

data

UB

data

COE

data

Figure 5-6: Data Directory Structure

fonts and app-defaults

Figure 5-6 shows two additional subdirectories, fonts and app-defaults. The
COE sets environment variables XFONTSDIR and XAPPLRESDIR to point to
these subdirectories. Their purpose is to contain additional fonts (such as NTDS
symbology) or application resource files that are not provided by the standard
X/Motif distribution. It is a violation of the COE for a segment to overwrite or
add files to the standard X/Motif distribution.

During installation, the installation tools look for subdirectories data/fonts
and data/app-defaults underneath the segment's directory. Files contained

Segment Types and Attributes

DII COE I&RTS: Rev 2.0 October 23, 1995 5-27

within these subdirectories must use the segment prefix to guarantee unique
names. The installation tools creates a symbolic link underneath the directory
/h/data/fonts to every file in the segment's data/fonts subdirectory, and
removes the links when the segment is deinstalled. Similarly, links are created
for files underneath the segment's data/app-defaults subdirectory.

Creating a data segment requires additional considerations. A segment structure
is created for the data and the installation tools logically insert the data
underneath /h/data for global and local scope, but underneath the parent
segment for segment data. This is best described through use of an example.

Assume a mine counter measures decision aid has an assigned directory of
MineTDA. Assume that a separate data segment is to contain parametric data on
floating, proximity, and land mines for the decision aid. Figure 5-7 shows the
appropriate directory structure for the data segment. Further assume that when
installed, the decision aid is located underneath /h/MineTDA. Consider how the
installation tools handle the mine data segment for global, local, and segment
scope.

h

MinesData

data SegDescrip

Floating Proximity Land

Figure 5-7: Example Data Segment Structure

global

The Data descriptor file (see below) describe the data scope. For a global data
segment, the installation tools will load the mine data underneath
/h/data/global/MineData. If there is insufficient space to load the segment
underneath /h/data/global, the install tools will report an error and abort.
The mine TDA can thus reference global proximity mine data as being
underneath $DATA_DIR/global/MineData/data/Proximity.

local

Segment Types and Attributes

5-28 October 23, 1995 DII COE I&RTS: Rev 2.0

For a local data segment, the installation tools will load the mine data on the first
available disk partition. The installation tools will then create a symbolic link
from /h/data/local/MineData/data to wherever the data segment was
actually loaded. That is, if the data segment is loaded underneath
/home2/MineData, then the symbolic link will point to the directory
/home2/MineData/data. The mine TDA can reference local proximity mine
data as being underneath $DATA_DIR/local/MineData/data/Proximity.

Segment Types and Attributes

DII COE I&RTS: Rev 2.0 October 23, 1995 5-29

segment

For segment scope data, the installation tools will load the mine data on the first
available disk partition. A symbolic link is then created from the directory
/h/MineTDA/data/MineData/data to wherever the data segment was
actually loaded. Proximity data can thus be referenced as being underneath
$HOME_DIR/data/MineData/data/Proximity.

It should now be clear why the COE requires that segments which dynamically
create global or local data do so underneath a directory of the form
SegDir/data, where SegDir is the name of the segment's assigned directory.
This creates a uniform technique for locating files whether they are created
directly by a segment, or loaded as part of a data segment.

In summary, COE compliance mandates that:

¥ Segments shall create a data subdirectory underneath /h/data for global
and local data if they own global or local data. The subdirectory created
shall be SegDir/data where SegDir is the name of the segment's
assigned directory.

¥ The parent COE component segment shall set the environment variable
DATA_DIR to point to /h/data.

¥ The parent COE component segment shall set environment variables
XFONTSDIR and XAPPLRESDIR to point to /h/data/local/fonts and
/h/data/local/app-defaults respectively.

¥ Segments shall use the environment variable DATA_DIR to reference data
underneath /h/data.

¥ Segments shall account for the initial creation of the segment's data
subdirectories underneath /h/data.

¥ Segments shall account for proper initialization in the event a data file is
not present or is corrupted.

¥ Segments shall place fonts that need to be accessible via XFONTSDIR in
the segment's data/fonts subdirectory. Files in this subdirectory shall
be named using the segment prefix.

¥ Segments shall place application resource files that need to be accessible
via XAPPLRESDIR in the segment's data/app-defaults subdirectory.
Files in this subdirectory shall be named using the segment prefix.

Segment Types and Attributes

5-30 October 23, 1995 DII COE I&RTS: Rev 2.0

5.4.3 Database Segment

A database segment contains everything that is to be installed on the database
server under the management of the DBMS and the ownership of the DBA. It
contains the component database and any utilities provided by the developers
for the DBA’s use in installing and filling that particular database. Database
segments may only be installed on a database server.

When a database segment is installed it must first lay down any scripts, data
files, etc. that will be used to create the database. These scripts are then executed
by the PostInstall process to create the component database. They must first
allocate storage to hold the database, and create one or more database accounts
to own that database. They then can create the database, within the storage just
allocated, and fill it with data. Finally, roles are created to manage access, and
the roles are given the appropriate privileges.

Developers cannot provide data files for the DBMS as part of the segment.
Database files must be created using the DBMS vendor’s utilities (e.g.
Oracle’sSQL*DBA ‘CREATE TABLESPACE’ command) to be correctly
incorporated in the DBMS instance.

h

SegDirName

Scripts SegDescrip install data DBS_filesbin

Figure 5-8: Database Segment Structure

Figure 5-8 shows the directory structure required for a database segment.
SegDirName is the segment's assigned directory. It must be unique and it must
be the same as the name of the database owner account for the segment’s data
objects.

Scripts

The Scripts directory shall contains any segment specific scripts needed to set
the runtime environment for the database installation. This will include
environment variables for all directory paths that are referenced by the
installation scripts.

Segment Types and Attributes

DII COE I&RTS: Rev 2.0 October 23, 1995 5-31

SegDescrip Directory

The SegDescrip directory contains the descriptor files necessary to install the
database segment. The PreInstall descriptor should prompt the installer to
provide the password for the DBMS’ database administrator account. The
ReleaseNotes descriptor should show how applications, operating system
groups and database roles are associated. Developers should also provide the
database schema including its dependencies. In addition to any narrative
information in this file, developers should include comments on their schema,
data objects and data elements as part of their database build.

install

The install directory contains the scripts to install and then create the
database segment. It includes all of the database definition language (DDL)
scripts that create the database objects for the segment. There are two sets of
DDL scripts in this directory. The first set allocates storage for the database,
creates the database owner, and defines the roles associated with the database
segment. It must be executed by a DBA. The second set creates all database
objects (tables, views, indexes, sequences, constraints, and triggers) that make up
the database. This set must be executed by the database owner.

data

The data directory contains any data files used to load the database. Data fill
may also be provided in a separate data segment if developers wish or need to
keep the fill separate.

bin

The bin directory contains any scripts or other executables used to load data
from the data files into the database.

DBS_files

The DBS_files directory contains the DBMS-controlled data files that make up
the storage for the database. This directory is owned by the DBMS, not the
segment. The data files are created during the installation of the segment,
normally in the PostInstall process. Directory ownership must be transferred to
the DBMS before the data files are created.

Segment Types and Attributes

5-32 October 23, 1995 DII COE I&RTS: Rev 2.0

5.4.4 Account Group Segments

An account group segment is a template for establishing a basic runtime
environment context that other segments may extend in a controlled fashion. An
account group segment determines

¥ the processes to launch,
¥ the order in which to launch processes, and
¥ the required environment script files (.cshrc, .xsession, etc.).

Account groups may also contain executables and data in the subdirectories
identified in Figure 5-2.

GCCS contains five predefined account groups. They are located underneath
/h/AcctGrps shown in Figure 5-1. The predefined account groups, listed by
their assigned directory, are as follows:

CharIF account group for character based interfaces

DBAdm account group for database administrators

GCCS account group for normal mission applications

SecAdm account group for security administrators

SysAdm account group for system administrators

COE-based systems will substitute their own account group for GCCS (e.g., GCSS
for the Global Command Support System). They will include CharIF if the
system supports a character based interface, and may include other account
groups to suit system mission requirements.

Figure 5-9 shows how the System Administrator account group is structured.
The structure of other account group segments is the same.

bin

Account groups utilize COE executables, located underneath /h/COE/bin, but
will usually include additional account group specific programs. These are
located in the account group's bin subdirectory. COE compliance requires that
executables within this subdirectory use the segment prefix to avoid potential
naming conflicts with other executables.

Segment Types and Attributes

DII COE I&RTS: Rev 2.0 October 23, 1995 5-33

SegDescrip

SysAdm

h

AcctGrps

Scripts

.cshrc

.cshrc.dev

.cshrc.SA

.login

.mwmrc

.mwmrc.runtime

.Xdefaults

.Xdefaults.SA

.xsession

.xession.SA
RunSA

bin data

Menus Icons

Figure 5-9: Example Account Group Directory Structure

data

Segment data specific to the System Administrator account group is located in
the data subdirectory. The Menus subdirectory contains menu files that have
menu entries for all options available from the basic System Administrator
application. The installation software may modify files contained here to add
other menu options. Account group menu files are used as templates from which
profiles are created by including or excluding desired menu items. The Icons
subdirectory is analogous, but defines icons for use by the desktop for launching
applications.

Scripts

An account group segment will usually contain the following to establish the
runtime environment:

.cshrc define environment variables

.login define terminal characteristics

.mwmrc define keyboard and mouse button bindings

.Xdefaults define Motif "look and feel" parameters

.xsession define operations to perform upon initiating an X Windows
session.

Segment Types and Attributes

5-34 October 23, 1995 DII COE I&RTS: Rev 2.0

Precise contents of these files is application dependent. After logging in, Unix
first executes the .cshrc file, then the .xsession file, then the .login file to
establish the runtime environment context.

Other segments may be loaded to extend the environment established by the
account group. This is done through environment extension files. COE-compliant
account group segments shall name extension files in the form

scriptname.segprefix

where scriptname is the environment file to be extended and segprefix is
the segment prefix. For the example shown in Figure 5-9, the environment
extension files are:

.cshrc.SA extensions to the .cshrc file

.login.SA extensions to the .login file

.Xdefaults.SA extensions to the .Xdefaults file

.xsession.SA extensions to the .xsession file.

The .mwmrc file does not need to be extended, and extension of the .login file
is rarely required.

Environment extension files permit COE installation software to provide
segment specific environment modifications. A segment uses the descriptor file
ReqrdScripts (see below) to indicate which environment file to extend, and
the installation tools modify the proper file within the account group segment.

For example, suppose the installation tools have loaded a segment underneath
/h/SAOpt, and the SAOpt segment has an environment extension file named
.cshrc.SAOpt in the segment's Scripts subdirectory. The installation tools
will include the new environment settings by inserting the following statements
in the account group's file .cshrc.SA:

if (-e /h/SAOpt/Scripts/.cshrc.SAOpt) then
source /h/SAOpt/Scripts/.cshrc.SAOpt

endif

The installation tools automatically remove these statements from .cshrc.SA if
the segment SAOpt is deleted.

Account group segment developer's shall ensure that environment files are
included in the account group segment's script files. The .cshrc file example
shown in Figure 5-9 includes the following statements

if (-e $SA_HOME/Scripts/.cshrc.SA) then

Segment Types and Attributes

DII COE I&RTS: Rev 2.0 October 23, 1995 5-35

source $SA_HOME/Scripts/.cshrc.SA
endif

to account for .cshrc extensions. Also note that the source command shall be
of the form

source $SA_HOME/Scripts/.cshrc.SA

rather than

source $USER_HOME/Scripts/.cshrc.SA

The COE mandated form permits a single copy of the environment extension file
that must be updated and maintained by the installation software.

The files .cshrc.dev and .mwmrc.runtime shown in Figure 5-9 relate to the
software development environment. Developer preferences such as alias
commands are included in .cshrc.dev. These preferences shall not be
included as part of the runtime environment. A technique such as

if ($?DEVELOPER) then
source $SA_HOME/Scripts/.cshrc.dev

endif

within the .cshrc file is required to achieve separation of the development
environment from the runtime environment.

This technique will not work for certain files, such as .mwmrc, because they do
not support conditional statements. The COE tools that create operator accounts
explicitly look for script files with an extension of .runtime and uses them to
create the operator's runtime environment. In the example shown in Figure 5-9,
the account creation tools will copy the file .mwmrc.runtime into the operator's
Scripts subdirectory and rename the copy as .mwmrc.

Account groups must also include the base environment established by the COE.
Subsection 5.4.8 below describes the COE component segments in more detail.
The .cshrc file in Figure 5-9 includes the base COE environment with the
statements

if (-e /h/COE/Scripts/.cshrc.COE) then
source /h/COE/Scripts/.cshrc.COE

endif

The remaining files in Figure 5-9 contain similar statements to include other
COE environmental settings.

Segment Types and Attributes

5-36 October 23, 1995 DII COE I&RTS: Rev 2.0

Account groups must also provide a script or program which launches the
application. This is the file named RunSA shown in Figure 5-9. COE compliance
requires this file to be located underneath the Scripts subdirectory.

To summarize compliance requirements for account groups:

¥ Account group segments shall provide environment extension files of the
form filename.segprefix, where segprefix is the account group's
segment prefix, for any files that other segments may extend (e.g.,
.cshrc.SA for the SysAdm account group).

¥ Account group executables shall use the segment prefix to avoid naming
conflicts.

¥ Account group segments shall not include the developer environment as
part of the runtime environment.

¥ Account group segments shall provide a single program or script with the
name Runxxx, where xxx is the segment prefix, to initiate execution of
the account group's application. This executable shall be located in the
account group segment's Scripts subdirectory.

¥ Account group segments shall automatically include environment settings
established in /h/COE/Scripts.

¥ Segment developers shall not modify account group files except through
use of the installation software.

¥ Segment developers shall not override environmental settings established
by the account group. Segments may use environment extension files to
expand the environmental settings.

5.4.5 Software Segments

Software segments add functionality to one or more account groups. The account
group(s) to which the software segment applies is called the affected account
group(s). The directory structure for a software segment was presented in
Figure 5-2.

Software segments frequently need to extend the runtime environment, add new
menus and icons to the desktop, and include new executables in the search path.
Environment extension files are located underneath the software segment's
Scripts subdirectory. The ReqrdScripts segment descriptor file (see below)
indicate which environment files are to be extended.

Segment Types and Attributes

DII COE I&RTS: Rev 2.0 October 23, 1995 5-37

Software segments provide additional menu and icon files underneath the
segment's data/Menus and data/Icons subdirectories respectively. The
segment descriptor files Menus and Icons (see below) are used to describe
where the new items are to appear on the desktop. At installation time, the menu
and icon files from all contributing segments are added to the affected account
group. This then serves as a master template of all possible functions provided
within the account group. Profiles are then created by selectively including or
excluding functions within this master template.

Segments that provide executables must ensure that the bin subdirectory is
included in the search path. This is accomplished by including a statement of the
following form in a .cshrc extension file:

set path=($path $segprefix_HOME/bin)

The segment shall append its bin subdirectory at the end of the search path, not
the beginning. An implied aspect of this requirement is that segments can not
depend upon a specific loading sequence, other than that a segment will not be
loaded until after all segments it depends upon are loaded.

COE compliance requires the following:

¥ Segments shall not make separate copies of executables from other
segments, the operating system, or other COTS products.

¥ Segments shall use environment extension files as necessary to extend the
environment established by the affected account group.

¥ Segments shall use the segment prefix to name objects whenever conflicts
may arise with other segments.

¥ Segments shall be completely self contained. Dependencies on, or
conflicts with, other segments shall be specified through the appropriate
Requires or Conflicts segment descriptor files.

¥ Segments shall include their bin subdirectory at the end of the search
path, not the beginning.

5.4.6 Patch Segments

The COE supports the ability to install field patches on an installed software
base. A patch segment means the replacement of a collection of one or more
individual files, including those of the operating system. It does not refer to

Segment Types and Attributes

5-38 October 23, 1995 DII COE I&RTS: Rev 2.0

overwriting a portion of a file, as is sometimes done to patch a section of binary
code.

Patches are created in a segment whose directory name is the name of the
affected segment followed by a ".", followed by the letter "P", followed by the
patch number. Figure 5-10 shows an example patch segment directory structure
for applying patch 5 to an ASW segment. The subdirectory SegDescrip is
required, but the remaining subdirectories are patch dependent. The example
illustrates a situation in which scripts, executables, and data files are to be
replaced by a single patch.

The installation software loads patches underneath the affected segment in a
subdirectory called Patches. Figure 5-11 shows the result of loading patch 5
from Figure 5-10. This approach makes it easy to find and identify what patches
have been applied to a segment. It also makes it easy for the installation software
to automatically remove patches when a segment is replaced by a later update. If
there is insufficient room to physically load the patch underneath the Patches
subdirectory, the patch is loaded on the first available disk partition. A symbolic
link is then created to preserve the logical structure shown. Also note that when
installed, the resulting subdirectory name of the patch for this example is P5, not
ASW.P5.

ASW.P5

h

SegDescripScripts bin data

Figure 5-10: Example Patch Directory Structure

As patches are installed and deinstalled, the descriptor file Installed in the
descriptor directory for the affected segment is updated to reflect what patches
are installed and removed, the date and time, the installer's name, and the
workstation from which the work was done.

When a patch is installed, it is the patch segment's responsibility to perform
whatever operations are necessary to replace files. In the example shown, the
PostInstall script must copy files from Scripts, bin, and data as required
to update files in the existing ASW segment.

Segment Types and Attributes

DII COE I&RTS: Rev 2.0 October 23, 1995 5-39

To facilitate patch removal, the PostInstall program may create compressed
copies of files before they are modified and put them underneath the patch
subdirectory (e.g., the ASW/Patches/P5 subdirectory in this example). In this
way, a DEINSTALL descriptor simply needs to copy the files from the patch
subdirectory to their original place and decompress them to restore the system to
the pre-patch state. If the files being replaced are large, this may require too
much disk space to store the original files. In such cases, the patch segment
should be designated as a permanent patch and not make copies. A patch
segment is considered to be permanent if the patch segment does not include a
DEINSTALL descriptor.

h

ASW

P5

SegDescripScripts bin data

SegDescrip ScriptsPatches

Figure 5-11: Example Installed Patch

The COE installation software assumes that higher numbered patches must be
removed before a lower numbered patch can be removed. For example, patch 2
can not be removed until patch 5 is removed. However, if patch 5 can not be
removed - because there is no DEINSTALL descriptor for patch 5 - patches 1 and
2 can not be removed. The only way to remove them is to remove the entire
segment.

COE compliance requires that:

¥ Patch segments shall be named SegDir.Pnumber where SegDir is the
directory name of the segment to be patched, and number is a sequential
patch number.

¥ Patch segments shall perform the necessary operations to replace files
through the PostInstall script.

¥ Permanent patch segments shall be designated by the absence of a
DEINSTALL script.

5.4.7 Aggregate Attribute

Segment Types and Attributes

5-40 October 23, 1995 DII COE I&RTS: Rev 2.0

It is sometimes convenient for a collection of segments to be treated as an
indivisible unit. The aggregate attribute provides this capability, and the
collection of segments are called an aggregate segment. One, and only one,
segment is designated as the parent segment and the remaining segments are
designated as children. Parent and child segments are designated as members of
an aggregate in the SegType descriptor file. The child segment must list its
parent segment, while the parent segment must list each child in the aggregate.
See subsection 5.5 below for the segment descriptor information required to do
this. Each segment within the aggregate is packaged according to its segment
type as described in preceding subsections.

The parent segment plays a special role in the aggregate. During installation,
only the parent segment is "seen" by the operator. Child components are not
displayed as selectable items, but are automatically loaded with the parent.
Therefore, the segment name and release notes associated with the parent
segment should be carefully chosen to be properly descriptive of the aggregate.

The parent segment is the first segment loaded from the aggregate. Child
segments are loaded next in the order listed by the parent segment. Because of
this, child segments may specify a dependency on the parent, but shall not
specify dependencies upon one another.

The COE requires that each segment include a Security segment descriptor
file. The security level of the parent segment must dominate that of the child
segments. The segment developer must ensure that each segment in the
aggregate is compatible for the hardware platform. VerifySeg will check for
this condition and reject an aggregate with incompatible hardware platforms
specified.

Disk space required is specified by each individual segment, not by the
aggregate parent. The COE installation tools may load parent and child
segments on different disk partitions, depending upon space available at install
time.

COE compliance requires:

¥ One and only segment in the aggregate shall be designated as the parent
segment.

¥ Child segments may specify a dependency on the parent, but shall not
specify dependencies upon one another.

¥ The security level of the parent segment shall dominate the security level
of all child segments.

Segment Types and Attributes

DII COE I&RTS: Rev 2.0 October 23, 1995 5-41

¥ Segments within an aggregate shall be consistent with regards to the
hardware platform specified.

¥ Segments shall individually specify their own disk space requirements.

5.4.8 COE Component Attribute

Authorized segments may specify the attribute of being a COE component
segment. COE component segments are similar to aggregate segments in that
one segment serves the role of a parent segment and all others are children to
that parent. The parent segment is similar to an account group segment which is
affected by a collection of child component segments. However, there are
important differences between COE component segments and aggregate
segments, and between the parent COE component segment and account groups.

¥ At installation time, a segment identified as a COE component is
compared against a table containing the names of authorized COE
component segments. If it does not match, the segment is rejected.

¥ Exactly one segment is designated as the parent COE component for the
entire system. This is the segment whose directory is /h/COE.

¥ Child COE component segments are not loaded unless they are required.

¥ COE component segments are organized into a very specific structure.

¥ The parent COE component segment does not set up a runtime
environment. It sets up a baseline environment which is inherited by all
account groups.

¥ The parent COE component segment, since it is not an account group,
does not require a RunCOE file.

Figure 5-12 shows the directory structure for COE component segments. Since
COE components form the foundation for the entire system, they are collected
together in a single place and are validated more rigorously during segment
development, integration, and installation. Special processing, as explained
below, is performed on the COE components because of their unique position
within the architecture.

The SegDescrip subdirectory, required for all segments, underneath /h/COE
refers to the collection of COE components as a whole. Segments designated as
child COE components are loaded in the subdirectory /h/COE/Comp. Each child

Segment Types and Attributes

5-42 October 23, 1995 DII COE I&RTS: Rev 2.0

COE component segment has its own SegDescrip, bin, Scripts, and data
subdirectory as appropriate. If insufficient space exists to load the COE
component directly under /h/COE/Comp, a symbolic link is created to where the
segment was actually loaded.

Environment files underneath /h/COE/Scripts are included by every account
group so that they are automatically inherited by every segment. The file
.cshrc.COE sets the path environment variable so that /h/COE/bin is first in
the search path before any other segments. Environment extensions for child
COE components are handled differently than environment extensions for other
segments. As child COE component segments are installed, environment
extension files located underneath the child COE component's Scripts
subdirectory are textually inserted directly into the appropriate file underneath
/h/COE/Scripts. This insertion is performed automatically by the installation
tools. This is done to avoid the runtime overhead of executing several source
statements to pick up child segment extensions..

Child COE component segments shall not alter the path environment variable.
It is not necessary to do so because as child COE components are loaded, the
installation tools create a symbolic link underneath /h/COE/bin to where the
executables were actually loaded. This is done so that the search path contains
only one entry for the COE, regardless of the number of actual segments
comprising the installed COE. This approach mandates that all COE component
segments use the segment prefix to name executables. VerifySeg will strictly
fail COE component segments that do not meet this requirement.

binSegDescrip data

EM UB ...

Scripts

.cshrc.COE

.Xdefaults.COE

.xsession.COE

.login.COE

h

COE

Comp

EM UB DCE CDE ...

Figure 5-12: COE Directory Structure

Symbolic links are also created underneath /h/COE/data to point to the child
COE component's data subdirectory. The installation tools automatically delete
these symbolic links when a COE component segment is deinstalled.

To summarize COE compliance requirements:

Segment Types and Attributes

DII COE I&RTS: Rev 2.0 October 23, 1995 5-43

¥ COE components shall be authorized by the DISA Chief Engineer.

¥ Child COE components shall not alter the path environment variable.

¥ COE components shall use the segment prefix to name all executables.

¥ Child COE components shall use the segment prefix to name all public
symbols contained in files within the segment's Scripts subdirectory.

5.4.9 Segment Dependencies

Segments specify dependencies upon one another through the Requires
descriptor described below. However, the COE does not allow circular
dependencies. That is, a situation such as Seg A depends upon Seg B, Seg B
depends upon Seg C, and Seg C depends upon Seg A is strictly forbidden.

Components of an aggregate may have dependencies upon other components
within the same aggregate. But since components of an aggregate are always
loaded together as a unit, this does not pose a problem. Components of an
aggregate must not specify dependencies upon one another in the Requires
file, even if this is indeed the case. Likewise, the parent segment must not specify
a dependency on children within the aggregate.

Segment Descriptors

5-44 October 23, 1995 DII COE I&RTS: Rev 2.0

5.5 Segment Descriptors

This section details the contents of the segment descriptor files. These files are
the key to providing seamless and coordinated systems integration across all
segments. Adherence to the format described here is required for all segments to
ensure COE compliance. This enables automatic verification and installation of
segments.

The software tool VerifySeg must be run during the development phase to
ensure that segments properly use segment descriptor files. The software tool
MakeInstall uses information in segment descriptor files to compress and
package segments in a format suitable for installation from tape, from a disk
based LAN segment server, from a remote site, or other media. At installation
time, the installation tools use segment descriptor information to make the COE
changes required (e.g., update menu files) so that software components are
available to the user.

Some segment information is contained within individual files while other
segment information is collected into a single file, SegInfo. Table 5-1 lists each
of the descriptor files and which are required, optional, or not applicable for
each segment type or segment attribute. Table 5-2 lists the same information for
segment descriptor sections within the SegInfo descriptor file. The VerifySeg
tool will display these two tables when the -t flag is given on the command
line.

SegInfo is an ASCII file with multiple sections containing segment descriptor
information. A segment section begins with a single line of the form

[section name]

where section name is chosen from the list in Table 5-2. A section continues
until another section name is encountered, or the end of the file is reached. A
section may appear only once within the SegInfo file, but the order in which
sections appear is unimportant. Section names are not case sensitive.

To preserve backwards compatibility, developers may use individual segment
descriptor files rather than sections within SegInfo. The SegInfo
enhancement simplifies the task of creating and maintaining segment descriptor
information. The file name required for individual segment descriptors is the
same as the section name shown in Table 5-2, but because Unix filenames are
case sensitive, the filenames must exactly match the section names shown. A
segment may use individual segment descriptor files, or SegInfo, but not both.

Segment Descriptors

DII COE I&RTS: Rev 2.0 October 23, 1995 5-45

Obsolete: Individual segment descriptor files is now obsolete and
will be phased out. Use SegInfo instead. This is required for the
Full COE Compliance Level.

Acct COE S/W
File Grp Aggregate Comp COTS Data DB Seg Patch
DEINSTALL O O O O O O O O
FileAttribs O O O O O O O O
Installed I I I I I I I I
PostInstall O O O O O O O R
PreInstall O O O O O O O O
PreMakeInst O O O O O O O O
ReleaseNotes R R R R R R R R
SegChecksum I I I I I I I I
SegInfo R R R R R R R R
SegName R R R R R R R R
Validated I I I I I I I I
VERSION R R R R R R R R

R - Required O - Optional N - Not Applicable
I - Created by Integrator or Installation Software

Table 5-1: Segment Descriptor Files

Acct COE S/W
Section Grp Agg Comp COTS Data DB Seg Patch
AcctGroup R O N N N N N N
COEServices O O O O O O O O
Community O O O O O O O O
Comm.deinstall O O O O O O O O
Compat O O O O O O O N
Conflicts O O O O O O O O
Data N N N N R N N N
Database X X X X X X X X
Direct O O O O O O O O
FilesList O O O R O O O O
Hardware R R R R R R R R
Icons R O N O N N O O
Menus R O N O N N O O
ModName * * * * * * * *
ModVerify * * * * * * * *
Network N N O N N N N N
Permissions O O N N N N O O
Processes O O O O N N O O
ReqrdScripts R O O N N N O N
Requires O O O O O O O O
Security R R R R R R R R
SegType * * * * * * * *

Segment Descriptors

5-46 October 23, 1995 DII COE I&RTS: Rev 2.0

R - RequiredO - Optional N - Not Applicable
X - Reserved for Future * - Obsolete

Table 5-2: SegInfo Segment Descriptor Sections

Certain general characteristics are common to all files or sections listed in
Tables 5-1 and 5-2:

1. All descriptor files are ASCII files.

2. In describing syntax, options which may appear exactly once are
delimited by brackets (e.g., "[]"), while options that may appear
multiple times are delimited by braces (e.g., "{ }"). The "|" (boolean
exclusive or) symbol is used to indicate a selection from a list of choices.
The delimiters are not entered into the actual descriptor file.

3. Descriptor files may contain comments. Comments are delimited by
using either the standard C convention (e.g., delimited by /* */), or on a
line by line basis using the # character. C style comments may not be
nested. C style comments may not be used in PostInstall,
PreInstall, or DEINSTALL since these are executable scripts.

4. Blank lines may be used freely and are ignored unless they are within a
block of text for insertion, replacement, etc. Blank lines are ignored
when searching for a block to delete or replace. Similarly, blanks, tabs,
and other whitespace are ignored unless they are part of a block to
insert or replace.

5. When a block of text is required, such as in adding a block of text to a
community file, the characters "{" and '"}" are used as block delimiters.

6. Keywords inside a descriptor file are always prefixed with the "$"
character.

7. C style #ifdef, #else, #elif, #endif, and #ifndef constructs may
be used in descriptor files, along with the standard C boolean operators.
These constructs may not span segment descriptor sections. The
constants which may be used in these constructs are defined in
subsection 5.3.

8. During installation, the COE installation software sets four environment
variables: INSTALL_DIR is the absolute pathname for where the
segment will be loaded (PreInstall) or was loaded (PostInstall).
MACHINE, MACHINE_CPU, and MACHINE_OS are set to describe the type

Segment Descriptors

DII COE I&RTS: Rev 2.0 October 23, 1995 5-47

of platform on which the software has been loaded. Valid values for
these environment variables are listed in subsection 5.3.

9. Parameters which follow a keyword are given on the same line as the
keyword and are separated by colons. The exception to this rule is when
the keyword signals the beginning of a variable length list. For example,

$PATH:/etc

specifies a pathname while

$LIST
f1
f2
f3

specifies a list of files.

10. Some segment descriptors, such as the Requires descriptor, specify the
name of another segment that the COE installation tools must search for
at install time. To speed up the search process, segment names are
expressed in the form

segment name:prefix:home dir:[version:{patches}]

where segment name is the name of the segment, prefix is the segment's
prefix, home dir is the segment's expected home directory, while version
and patches are optional. home dir is searched first, and if the segment
name found there is the same as that specified, a match is declared
successful. If home dir does not exist, is not a segment, or the segment
name does not match, an exhaustive search is performed on all
segments on all mounted disk partitions.

11. Some segment descriptors allow a version number or patch level to be
specified. See the previous Requires example. If no version number is
specified, any version found is successful. If a version number is
specified, an ordinary lexical comparison of primary version numbers is
made with zeroes inserted for any missing digits. For example, a
version number such as 3.4/SunOS-4.1.3 is truncated to just the primary
version number which is then expanded to be 3.4.0.0 for comparison
purposes.

12. Some descriptor file features require prior DISA Chief Engineering
approval, or are restricted to COE component segments. These are
described in the sections which follow.

Segment Descriptors

5-48 October 23, 1995 DII COE I&RTS: Rev 2.0

COE compliance requires the following:

¥ Segments shall include all required files shown in Table 5-1.

¥ Segments shall not delete the segment directory during a DEINSTALL
script.

¥ Segments shall fully specify all dependencies and conflicts through the
Requires and Conflicts descriptor files. (Circular dependencies are
not allowed.)

¥ Segments shall fully specify disk and memory requirements (memory
may be omitted for data segments) in the Hardware file.

¥ Segments shall not use PostInstall, PreInstall, or DEINSTALL to
make modifications that the COE installation software will make.

¥ Segments shall use the ReleaseNotes file to convey information
meaningful to an operator, not the system integrator. ReleaseNotes
files shall not include company names, names of individuals, nor DISA
software trouble report numbers.

¥ Segments shall specify a version number and date in the VERSION
descriptor file, and shall increment the version number for each
subsequent release. Version numbers shall fully comply with the
requirements stipulated in subsection 3.1 of this document.

¥ Segments shall use individual segment descriptor files or a single
descriptor file, SegInfo, but not both. Full COE compliance requires
using the SegInfo file since segment descriptor files will be phased out
in a subsequent release.

5.5.1 AcctGroup

Syntax for the AcctGroup descriptor is

group name:group ID:shell:profile flag:home dir:default profile name

where

group name is an alphanumeric string used to identify this account group. The
account group name must be unique (i.e., no other account group may have
the same name).

Segment Descriptors

DII COE I&RTS: Rev 2.0 October 23, 1995 5-49

group id is a Unix group id to be inserted into the password file for accounts
created from this group. The user id is calculated automatically by examining
the password file for user accounts within the same group and then adding 1
to the highest user id. Group ids less than 100 should be avoided.

shell is the Unix shell to execute when logging in (e.g., /bin/csh, /bin/sh)

profile flag is 0 if no profiles are allowed, otherwise 1.

home dir is the home directory for the given account group (e.g.,
/h/AcctGrps/SecAdm).

default profile name is an alphanumeric string identifying the account group's
default profile. This name is ignored unless the profile flag is nonzero.

In effect, AcctGroup is a template of what to enter into the /etc/passwd file
for accounts within this group.

Group names and profile names are not case sensitive. The maximum number of
characters in a group name, including embedded blanks, is 15. The maximum
number of characters in a profile name is 15. The maximum number of
characters in the home directory pathname is 256.

If the account group is to have a default profile, the installation software will
automatically create the profile with the name specified. The profile will be set
up to have a classification level of TOP SECRET (unless the segment specifies
otherwise), all possible object permissions enabled (see the Permissions
descriptor), and all possible menu and icon entries enabled.

The profile classification can be explicitly stated by including a line of the form

$CLASSIF:classification

in the descriptor file. Valid classification values are

UNCLASS
CONFIDENTIAL
SECRET
TOP SECRET

5.5.2 COEServices

Segments frequently require changes to services provided by the operating
system. Make such requests through the COEServices descriptor to ensure

Segment Descriptors

5-50 October 23, 1995 DII COE I&RTS: Rev 2.0

proper coordination with other segments. One or more entries may follow each
keyword below.

$GROUPS

Segments may add entries to the /etc/group file as follows:

$GROUPS
name:group id

where name and group id have the meaning defined by the Unix group file. If the
specified name already exists in the group file but with a different group id, an
error will be generated.

$PASSWORDS

Segments may occasionally need to add entries into the Unix password file to
establish file ownership. The syntax is:

login name:user id:group id:comment:home dir:shell

where these entries correspond to the entries in the Unix passwd file. Multiple
lines may be included to add multiple password entries.

The installation software inserts an "*" for the password field to ensure that these
are system accounts, not actual login accounts. Segments that need to add a user
account must be approved in advance by the DISA Chief Engineer, and then will
generally be approved only for COE component segments.

The installation software processes the $PASSWORDS keyword before the
segment is actually loaded onto disk so that PostInstall scripts which need to
set file ownership will work properly.

$SERVICES

Ports are added to the /etc/services system file through the $SERVICES
keyword. The syntax is:

$SERVICES[:comment]
name:port:protocol{:alias}

where

name is the name of the socket to add,

Segment Descriptors

DII COE I&RTS: Rev 2.0 October 23, 1995 5-51

port is the port number requested, and

protocol is either tcp or udp.

The optional comment, if provided, will be inserted into the /etc/services file
by the installation software.

If the port number requested is already in use under another name, an error will
be generated. Note that port numbers in the range 2000-2999 are reserved for
COE segments.

5.5.3 Community

Many of the descriptor files direct the installation software to insert, delete,
replace or otherwise alter blocks of text in ASCII files. The Community
descriptor file is provided to issue similar commands to the installation software
for which no corresponding descriptor file exists. It is intended to be a "catch all"
and should be used carefully, and only when there is no other way to
accomplish the modifications required. VerifySeg will fail any segment which
attempts to use a Community descriptor file to modify a file that is already
handled by another descriptor file.

Segment developers shall use the Comm.deinstall descriptor file to undo
changes made by the Community file. Comm.deinstall is invoked when a
segment is removed, and is essentially a reverse image of the Community file.

The commands listed below are available for both the Community and
Comm.deinstall files. Blocks of text are delimited by braces, where the
opening and closing brace are on a line by themselves. When commands require
that a textual search be done, embedded spaces and control characters are
ignored during the search.

To illustrate how the commands work, assume the file IDE.TEST contains the
following text:

Sample file

Define runtime vars
setenv OPT_HOME /h/OPT
setenv OPT_DATA $OPT_HOME/data

set a test var
setenv testvar $HOME

set filec

Segment Descriptors

5-52 October 23, 1995 DII COE I&RTS: Rev 2.0

setenv testvar2 $HOME/data

end of example file

Segment Descriptors

DII COE I&RTS: Rev 2.0 October 23, 1995 5-53

$APPEND

Append the block of text which follows to the end of the file.

Example:

$APPEND
{
This is an example to append at the end of a file
source my_script
#
}

$COMMENT:char

Using the character specified, find the block of text which follows and comment
it out. This effectively deletes text, but has the advantage that it can easily be
uncommented.

The command sequence

$COMMENT:#
{
set a test var
setenv testvar $HOME
set filec
}

will replace the text to modify the file as follows:

Sample file

Define runtime vars
setenv OPT_HOME /h/OPT
setenv OPT_DATA $OPT_HOME/data

set a test var
#setenv testvar $HOME
#
#set filec

setenv testvar2 $HOME/data

end of example file

Notice that the blank line between setenv and set is ignored in searching for
the lines to delete, but is preserved in the commented out version of the file.

Segment Descriptors

5-54 October 23, 1995 DII COE I&RTS: Rev 2.0

Note: Be careful to note that the '#' character is not a valid
comment delimiter for all community files! (e.g., X and Motif
resource files use '!' as a comment delimiter.)

$DELETE [ALL]

Find the block of text which follows and delete it from the file. If ALL is
specified, delete every occurrence in the file.

The command sequence

$DELETE
{
set a test var
setenv testvar $HOME
set filec
}

will delete the block of text to modify the file as follows:

Sample file

Define runtime vars
setenv OPT_HOME /h/OPT
setenv OPT_DATA $OPT_HOME/data

setenv testvar2 $HOME/data

end of example file

Notice that the blank line between setenv and set is ignored in searching for
the lines to delete, but is deleted in the resulting version of the file.

$FILE filename

Name the file to which the commands that follow apply.

Example:

$FILE:/h/IDE/Scripts/IDE.JMCIS

Segment Descriptors

DII COE I&RTS: Rev 2.0 October 23, 1995 5-55

$INSERT [ALL]

Find the first occurrence of the first block of text, then insert the second block of
text immediately after it. If ALL is specified, insert the second block of text after
every occurrence.

Example:

$INSERT
{
setenv OPT_DATA $OPT_HOME/data
}
{
setenv OPT_BIN $OPT_HOME/bin
setenv OPT_SRC $OPT_HOME/src
}

The resulting changes to the example file are:

Sample file

Define runtime vars
setenv OPT_HOME /h/OPT
setenv OPT_DATA $OPT_HOME/data
setenv OPT_BIN $OPT_HOME/bin
setenv OPT_SRC $OPT_HOME/src

set a test var
setenv testvar $HOME

set filec

setenv testvar2 $HOME/data

end of example file

$REPLACE [ALL]

Replace the first occurrence of the first block of text, if found, with the second. If
ALL is specified, replace every occurrence.

Example:

$REPLACE
{
setenv OPT_HOME /h/OPT
}
{

Segment Descriptors

5-56 October 23, 1995 DII COE I&RTS: Rev 2.0

setenv OPT_HOME /home2/OPT
}

Embedded spaces and control characters are ignored in the search, but are
preserved in the replacement. Case is preserved in the search and in the
replacement.

$SUBSTR: DELETE [ALL] | INSERT [ALL] | REPLACE [ALL]

When performing a textual search, search for a matching substring instead.
Insertions, deletions, or replacements are made as indicated.

$UNCOMMENT:char

Find the block of text which follows and uncomment it. The comment character
is char, but the block of text which follows the $UNCOMMENT command does not
contain the comment character.

Example (undo the effects of the $COMMENT example above):

$UNCOMMENT:#
{
set a test var
setenv testvar $HOME
set filec
}

Blank lines will also be uncommented if there are any between

set a test var

and

set filec

Consider a more complete example. The following will insert two new
environment variables at the end of the file, replace OPT_HOME with
OPTION_HOME, replace OPT_DATA with OPTION_DATA, and replace all
occurrences of the substring "stvar" with "st_var". This example also shows
the use of comments.

Segment Descriptors

DII COE I&RTS: Rev 2.0 October 23, 1995 5-57

/* This is a multi-line comment
 just like in standard C.
*/
This is a single line comment

Assume file is in IDE Scripts subdirectory
$FILE:/h/IDE/Scripts/IDE.TEST

$REPLACE
{
setenv OPT_HOME /h/OPT
setenv OPT_DATA $OPT_HOME/data
}
{
setenv OPTION_HOME /h/OPTION
setenv OPTION_DATA $OPTION_HOME/data
}

$SUBSTR:REPLACE ALL
{
stvar
}
{
st_var
}

$APPEND
{
#------------------------
BEGIN xxx modifications
#------------------------

setenv my_var /h/IDE

#------------------------
END xxx modifications
#------------------------
}

Segment Descriptors

5-58 October 23, 1995 DII COE I&RTS: Rev 2.0

The resulting file IDE.TEST is

Sample file

Define runtime vars
setenv OPTION_HOME /h/OPTION
setenv OPTION_DATA $OPTION_HOME/data

set a test var
setenv test_var $HOME

set filec

setenv test_var2 $HOME/data

end of example file
#------------------------
BEGIN xxx modifications
#------------------------

setenv my_var /h/IDE

#------------------------
END xxx modifications
#------------------------

This example shows the use of comments to enclose modifications between a
BEGIN/END pair. This technique is recommended when making modifications
to community files to make it easier to determine changes made as segments are
installed. (This technique is used by the installation software as environment
extension files are modified. Therefore, developers must not put such comments
in environment extension files.)

5.5.4 Comm.deinstall

Comm.deinstall is the inverse of Community. Its purpose is to undo
modifications made to community files when a segment is removed from the
system.

The corresponding Comm.deinstall file to undo the changes made in the
example from the Community subsection is:

Segment Descriptors

DII COE I&RTS: Rev 2.0 October 23, 1995 5-59

$FILE:/h/IDE/Scripts/IDE.TEST
$REPLACE
{
setenv OPTION_HOME /h/OPTION
setenv OPTION_DATA $OPTION_HOME/data
}
{
setenv OPT_HOME /h/OPT
setenv OPT_DATA $OPT_HOME/data
}

$SUBSTR:REPLACE ALL
{
st_var
}
{
stvar
}

$DELETE
{
#------------------------
BEGIN xxx modifications
#------------------------

setenv my_var /h/IDE

#------------------------
END xxx modifications
#------------------------
}

5.5.5 Compat

Subsequent releases of a segment are not always backwards compatible. The
Compat descriptor is used to indicate the degree to which backward
compatibility is preserved with the newly released segment. This is achieved by
listing version numbers for previous releases which the current release supports.
In the sense used here, backwards compatibility means that the segment being
released will work with other segments that have been compiled and linked
with an earlier release version.

The format of the Compat descriptor is a single line containing one of three
possible entries:

+ALL This indicates that the current release is backwards
compatible with all previous releases.

Segment Descriptors

5-60 October 23, 1995 DII COE I&RTS: Rev 2.0

-NONE This indicates that the current release is not backwards
compatible with any previous release.

version list This indicates that the current release is backwards
compatible to a list of versions. Version lists are denoted by
the $LIST, $EARLIEST, and $EXCEPTIONS keywords.

For example, suppose the new MySeg release is version 3.2.5.4 and that it is
compatible with all versions from 2.9.1 up to the present with the exception of
versions 3.0.1.2 and the 3.1 version series. Then the Compat file would contain
the following entries:

First number listed is earliest compatible version
$EARLIEST
2.9.1
Remaining version numbers are exceptions
$EXCEPTIONS
3.0.1.2
3.1

When a digit is omitted from the version number, or an asterisk is in place of the
digit, there is an assumed wildcard in that digit position.

The $LIST keyword is used to indicate an explicit list of compatible versions.
$LIST is mutually exclusive with the $EARLIEST/$EXCEPTIONS keyword
pair. When specifying a list, a range can be indicated by the optional keyword
$TO. Thus, the previous example could also have been done as

$LIST
2.9.1 $TO 3.0.1.1
3.0.1.3 $TO 3.0.9
3.2.0 $TO 3.2.5

In some cases, one or more patches must be applied to preserve compatibility.
The patches are listed by number immediately after the version number by using
a colon between patch numbers. This may be done only with the $LIST
keyword. For example,

$LIST
2.9.1:P4:P5
3.0.1.1
3.0.2:P8 $TO 3.0.4:P7

This means that the current version is backwards compatible with

¥ 2.9.1, but only if patches P4 and P5 have been applied

Segment Descriptors

DII COE I&RTS: Rev 2.0 October 23, 1995 5-61

¥ 3.0.1.1 with no restrictions regarding patches
¥ 3.0.2 through 3.0.4 with the restriction that patch P8 must be applied to

version 3.0.2 and patch P7 must be applied to version 3.0.4.

If no Compat file exists, the present version is assumed to not be backwards
compatible with any previous releases. That is, -NONE is assumed.

5.5.6 Conflicts

Two segments may conflict with one another so that one or the other, but not
both, can be installed. The Conflicts descriptor is used to specify such inter-
segment conflicts. The format is a list of conflicting segments in the form:

segment name:prefix:home dir[:version{:patch}]

where segment name is the name of the conflicting segment as given in the
segment's SegName descriptor file, prefix is the conflicting segment's segment
prefix, and home dir is the conflicting segment's home directory.

The Conflicts descriptor is essentially the mirror image of the Requires
descriptor file.

5.5.7 Data

The Data descriptor is used to describe where data files are to be logically
loaded and their scope (global, local, or segment). Only one of the three scopes
may be specified in the descriptor file; that is, a data segment has one and only
one scope.

The syntax is

$SEGMENT:segname:prefix:home dir

for segment data, or

$LOCAL:segname:prefix:home dir

for local data, or

$GLOBAL:segname:prefix:home dir

for global data, where segname, prefix, and home dir refer to the affected segment.
The segname and prefix must match the name given in the affected segment's
SegName descriptor. Figure 5-7 shows that the data to install is underneath the
segment's data subdirectory.

Segment Descriptors

5-62 October 23, 1995 DII COE I&RTS: Rev 2.0

Obsolete: The format here differs from earlier releases. The size
required is now specified in the Hardware descriptor instead of
the Data descriptor. The old format will be supported to provide
backwards compatibility, but it is being phased out. Full COE
compliance requires uses of the format stated here.

5.5.8 Database

This segment descriptor is not currently implemented. It is reserved for future
use to implement database specific requirements as they evolve.

5.5.9 DEINSTALL

The DEINSTALL descriptor file is an executable, either a script or a C program,
that is invoked by the installation software when the operator has elected to
remove a segment. This may occur by explicitly selecting a segment to remove,
or when installation of a new version of the segment is done.

If this file does not exist, the segment is assumed to be permanent and can not be
removed except when installing a new version. If a new version is installed and
this file does not exist, the installation software will use the information in the
descriptor directory to undo changes made by the previous installation of the
segment and then simply delete the directory.

For security reasons, the DEINSTALL script is not run with root level privileges,
unless the $ROOT keyword is given in the Direct descriptor, described below.

Obsolete: Previous versions of the COE allowed DEINSTALL to
run with root privileges. This capability is no longer the default.
The $ROOT keyword must be used instead.

Segment Descriptors

DII COE I&RTS: Rev 2.0 October 23, 1995 5-63

5.5.10 Direct

The segment descriptor Direct allows a segment to issues special instructions
to the installation tools. If the segment is part of an aggregate, the directives
below apply only to the segment in whose SegDescrip subdirectory the
directives appear.

$ACCTADD: executable

This keyword informs the installation software that the specified executable, in
the segment's bin subdirectory, should be run each time a user account is added
to the system. VerifySeg will flag use of this keyword as a warning to
highlight that it is being used. Prior permission must be given by the DISA Chief
Engineer before this keyword can be used.

$ACCTDEL: executable

This keyword informs the installation software that the specified executable, in
the segment's bin subdirectory, should be run each time a user account is
deleted from the system. VerifySeg will flag use of this keyword as a warning
to highlight that it is being used. For security reasons, prior permission must be
given by the DISA Chief Engineer before this keyword can be used.

$NOCOMPRESS

The MakeInstall tool automatically compresses segments to reduce the
amount of space required on disk or tape, and to reduce the download time. The
installation tools automatically decompress segments at installation time. The
$NOCOMPRESS keyword indicates that compression is not to be performed.

$REBOOT

The presence of this keyword indicates that the installation software should
automatically reboot the computer after the segment is loaded. If several
segments have been selected for loading at one time, the reboot operation will
not occur until all segments have been processed. The operator will be notified
before the reboot occurs and given the option to override the reboot directive.

$REMOTE[:XTERM | :CHARBIF]

This keyword indicates that the functions (all functions) provided by this
segment can be executed remotely. At installation time, the installation software
will note that this segment can be executed remotely. If the XTERM attribute is
present, it indicates that the segment can also be accessed via an "xterm"
capability, and output will be routed to the display surface pointed to by the

Segment Descriptors

5-64 October 23, 1995 DII COE I&RTS: Rev 2.0

DISPLAY environment variable setting. If the CHARBIF attribute is present, it
indicates that the segment supports a character based interface. CHARBIF and
XTERM will normally be mutually exclusive.

By default, segments are assumed to be locally executable only.

$ROOT:PostInstall | PreInstall | DEINSTALL

The presence of this keyword indicates that the specified descriptor must be run
with root privileges. A separate $ROOT entry is required for each descriptor.
VerifySeg will flag use of this keyword as a warning to highlight that it is
being used. For security reasons, prior permission must be given by the DISA
Chief Engineer before this keyword can be used.

5.5.11 FileAttribs

The FileAttribs descriptor allows a segment to specify the attributes (owner,
read/write permissions, group) for each file in the segment. It is created by the
tool MakeAttribs (see Appendix C). The installation tools, just prior to
PostInstall, will use information in this file to set file attributes.

FileAttribs has certain restrictions due to security and segment integrity
considerations. The following will be ignored:

¥ Files within the SegDescrip subdirectory
¥ Files outside the segment
¥ Requests to set root ownership
¥ Requests to set Unix "sticky bits" (e.g., chmod 4644)

If FileAttribs is not provided by the segment, the installation tools will
automatically do the following for all except COTS segment types:

¥ chmod 554 for all files in the bin subdirectory
¥ chmod 664 for all files in the data subdirectory
¥ for account groups, set owner to the same group id as specified in the

AcctGrps descriptor for all subdirectories except SegDescrip
¥ for other segment types, set owner to the same group id as the affected

segment for all subdirectories except SegDescrip.

5.5.12 FilesList

FilesList is a list of files and directories that make up the current segment. It
is required for COTS segments. For other segment types, it is useful for
documenting community files modified or used by the segment.

Segment Descriptors

DII COE I&RTS: Rev 2.0 October 23, 1995 5-65

FilesList may contain the following keywords:

$DIRS a list of directories which this segment adds to the system. All
files in the directory are assumed to belong to the segment.

$FILES a list of files which this segment adds to the system.

$PATH a shortcut for specifying a pathname. Succeeding $DIRS or
$FILES are relative with respect to the path specified.

A keyword must precede any list so that it will be clear whether a directory or a
file is intended.

As an example, assume a segment to be installed creates the following four
subdirectories

/h/data/test/data1
/h/data/test/data2
/h/data/opt/data3
/usr/opt/temp

and adds three files (f1, f2, f3) to the /etc subdirectory. Then the file
FilesList could contain the following entries:

$PATH:/h/data
$DIRS
test/data1
test/data2
opt/data3
$DIRS
/usr/opt/temp
$PATH:/etc
$FILES
f1
f2
f3

The $DIRS keyword before /usr/opt/temp is not necessary, but is shown to
illustrate that FilesList may contain multiple occurrences of the keywords.

5.5.13 Hardware

The Hardware descriptor defines the computing resources required by the
segment. Keywords $CPU and $MEMORY may appear only once; both are
required for all segments, except that $MEMORY may be omitted for a data

Segment Descriptors

5-66 October 23, 1995 DII COE I&RTS: Rev 2.0

segment. $DISK and $PARTITION are mutually exclusive, but one must appear
in the segment descriptor. $DISK may appear only once, but $PARTITION may
appear multiple times. $OPSYS and $TEMPSPACE are optional.

$CPU:platform | ALL

platform is one of the supported platform constants listed in subsection 5.3 for
MACHINE or MACHINE_CPU, or ALL. If ALL is given, it indicates that the segment
is hardware independent (e.g., a data segment or a segment comprised of shell
scripts). If platform is a generic constant (e.g., HP or PC), it applies to all
platforms of that class. Thus,

$CPU:PC

indicates that the software can be loaded on any PC, whether the PC is a 386,
486, or Pentium class machine. However,

$CPU:PC386

indicates that the software can be loaded on a 386 or better class platform.
Similarly, HP712 indicates that the software can be loaded on an HP712 or better
class platform that is binary compatible with the HP712.

$DISK:size[:reserve]

size is expressed in kilobytes and is the size of the segment, including all of its
subdirectories, at install time. The COE tool CalcSpace (see Appendix C) will
compute the disk space occupied by a segment and update this keyword. reserve
is also expressed in kilobytes and is the additional amount of disk storage to
reserve for future segment growth.

$MEMORY:size

size is expressed in kilobytes of RAM required.

$OPSYS:operating system | ALL

operating system is one of the supported platform constants listed in
subsection 5.3 for MACHINE_OS, or ALL. If ALL is given, it indicates that the
segment is operating system independent. Dependencies on a particular version
of the operating system are defined in the Requires descriptor where a
dependency on a specific segment (e.g., operating system with a particular
version) is described.

Segment Descriptors

DII COE I&RTS: Rev 2.0 October 23, 1995 5-67

$PARTITION:diskname:size[:reserve]

This keyword allows segments to reserve space on multiple disk partitions. The
installation software will not split a segment across disk partitions, but the
segment may do so in a PostInstall script. Use of multiple disk partitions is
discouraged.

size and reserve have the same meanings as for $DISK. diskname is either an
explicit partition name (e.g., /home2) or an environment variable name of the
form DISK1, DISK2, ... DISK99. The installation software will set the
environment variables DISK1, DISK2, etc. to the absolute pathname for where
space has been allocated. These environment variables are defined for
PreInstall and PostInstall, but not for DEINSTALL. $PARTITION
keywords are assumed to be in sequential order, so that environment variable
DISK1 will refer to the first keyword encountered, DISK2 to the second, etc.

For example, suppose a TDA is compiled to run on both and HP and a Solaris
workstation. Assume for the HP it requires 512 K of memory, requires 1 MB of
disk storage for the program and its data files, and will expand over time to a
maximum of 4 MB. For Solaris, assume it requires 576 K of memory, 1.5 MB for
initial disk space, and will expand to 5 MB. For a PC, assume the requirements
are the same as for the Solaris machine. The proper Hardware file is

#ifdef HP
$CPU:HP
$DISK:1024:3072
$MEMORY:512

#elif SOL
$CPU:SOL
$DISK:1536:3584
$MEMORY:576

#elif PC && NT
$CPU:PC486
$DISK:1536:3584
$OPSYS:NT
$MEMORY:576

#endif

Note that this example indicates that the information described is the same for
all HP platforms, the same for all Solaris platforms, but that it only applies to
PC486 or better machines running Windows NT.

As another example, assume a data segment is to be allocated across three disk
partitions. Further assume that the first partition must be /home5 and requires
10 MB, but the remaining space required is 20 MB each and can be on any
available disk partition. The proper $PARTITION statements are:

Segment Descriptors

5-68 October 23, 1995 DII COE I&RTS: Rev 2.0

$PARTITION:/home5:10240
$PARTITION:DISK2:20480
$PARTITION:DISK3:20480

Assume that the installation software is able to allocate space on /home5 as
requested, and that the remainder of the space requested is on /home18. The
installation software will set the following environment variables:

setenv DISK1 /home5
setenv DISK2 /home18
setenv DISK3 /home18

$TEMPSPACE:size

Some segments may need temporary space during the installation process. The
$TEMPSPACE keyword requests that size kilobytes of disk space be allocated for
temporary use during the installation process. If space is available, the
installation software sets the environment variable COE_TMPSPACE to the
absolute path where space was allocated. If space is not available, an error
message is displayed to the operator and the segment installation fails. The
installation software automatically deletes the allocated space when segment
installation is completed. Space is allocated prior to executing PreInstall.

5.5.14 Icons

The Icons descriptor is used to define the icons that are to be made available on
the desktop to launch segment functions. The format of the descriptor is a list of
files underneath data/Icons that define icon bitmaps and their associated
executables. Refer to the Executive Manager API documentation for a
description of the file format.

5.5.15 Installed

The installation software creates the file Installed as segments are loaded.
The file specifies the segment that was loaded, the date and time of the
installation, which workstation was used to do the installation, and the version
number of the software used to do the installation. This file is located
underneath the segment descriptor directory.

5.5.16 Menus

Use the file Menus to list the names of menu files contained within the segment.
Figure 5-2 shows that segment menu files are located underneath data/Menus.
Refer to the Executive Manager API documentation for the menu file format.

Segment Descriptors

DII COE I&RTS: Rev 2.0 October 23, 1995 5-69

For account groups, this descriptor is simply a list of the account group's menu
files. For other segments, the format of each line is

menu file[:affected menu file]

where menu file is the name of a menu file underneath the segment's
data/Menus subdirectory, and affected menu file is the account group menu file
to update. If multiple account groups are affected, as listed in the SegName
descriptor, each affected account group is updated. If no affected menu file is
listed, then menu file is simply added to the list of menu files which comprise
the account group's menu templates.

For example, suppose a segment called ASWTDA has four menu files in the
data/Menus subdirectory: System, MoreStuff, ASWTDA, and Logging.
Assume that System is to be added to the affected account group's System
menu file, and MoreStuff is to be added to the affected account group's
Default menu file. The proper entries are as follows:

System:System
MoreStuff:Default
ASWTDA
Logging

Obsolete: Earlier releases of the COE provided a $PATH keyword
to indicate where menu files were located relative to the segment's
home directory. This method is obsolete and will be phased out.
Full COE compliance requires adherence to Figure 5-2.

5.5.17 ModName

Obsolete: ModName has been replaced by the SegName descriptor
file. ModName is supported for backwards compatibility, but will
be phased out in a later release. Full COE compliance requires use
of SegName instead of ModName.

5.5.18 ModVerify

Obsolete: ModVerify has been replaced by SegChecksum.

Segment Descriptors

5-70 October 23, 1995 DII COE I&RTS: Rev 2.0

5.5.19 Network

The Network descriptor is used to describe network related parameters. Use of
this descriptor requires prior approval by the DISA Chief Engineer, and its use is
restricted to COE component segments. VerifySeg will strictly fail any
segment that includes this descriptor unless it is a COE component segment.

One or more entries may follow each keyword listed below.

$HOSTS

IP addresses and hostnames are generally established by a system or network
administrator. Segments may add IP addresses and host names as follows:

$HOSTS
LOCAL | REMOTE :IP address:name{:alias}

where IP address, name, and alias are as defined for the Unix /etc/hosts file. If
the IP address specified already exists in the network hosts file, the name and
alias entries are added as alias names. If LOCAL is specified, the entry is made
only to the local network hosts file. If REMOTE is specified, the entry is applied
to the NIS+ or DNS server. If REMOTE is specified but neither NIS+ or DNS are
installed, it will default to LOCAL.

Segments should rarely need to directly add host table entries. VerifySeg will
issue a warning for any segment which adds host table entries.

$MOUNT

The $MOUNT keyword is used to specify NFS mount points. The syntax is

hostname:NFS mount point:target dir

where hostname is the name of a workstation on the network, NFS mount point is
the file partition to mount, and target dir is where to mount the requested
partition on the local machine. If target dir does not exist on the local machine, it
will be created.

For example, the sequence

$MOUNT
dbserver:/home3/USERS:/h/USERS

will perform the Unix equivalent of

Segment Descriptors

DII COE I&RTS: Rev 2.0 October 23, 1995 5-71

mount dbserver:/home3/USERS /h/USERS

If the hostname specified is the same as the local machine, a mount is not
performed. Instead, the NFS mount point is made available for other
workstations to mount. If a mount is performed as a result of processing this
keyword, the system will automatically reboot the system after segment
installation is completed. It performs as if the $REBOOT keyword (see the
Direct descriptor) was encountered; that is, the operator is notified that a
reboot is required and given an option to override the reboot directive.

$NETMASK:mask

This keyword allows a COE component segment to set the subnet mask to mask.
This should rarely be required since the netmask is normally established as part
of the kernel COE. If two COE component segments attempt to set the netmask,
the last segment loaded succeeds.

$SERVERS

Most COE services are implemented as servers. This keyword allows a segment
to list the servers, by symbolic name, that it contains. These servers are
registered with the COE so that other segments can find their location through
the COEFindServer function (see Appendix C).

Each name listed is added to a table maintained by the COE of all servers in the
system. This table is used by the System Administration software to allow a site
administrator to indicate which platform actually contains the server. The name
given is added as an alias to the network host table for the workstation that
contains the server. If NIS+/DNS are being used, the alias is added to the
NIS+/DNS managed host table. Otherwise, it is added to /etc/hosts.

For example, assume a COE component segment contains two servers named
masterTrk and masterComms. Assume that this segment is loaded on two
workstatations: sys1 and garland. Some servers are designed to recognize
whether they are the master server, or are a slave to a master server located
elsewhere. For this reason, the COE must handle situations where the same
segment is loaded on a server and a client machine. Assume in this example that
the segment operators as a master server on sys1, but as a slave on garland.

The following statements identify the servers contained within this segment:

$SERVERS
masterTrk
masterComms

Segment Descriptors

5-72 October 23, 1995 DII COE I&RTS: Rev 2.0

When the segment is loaded, the installation software performs the following
actions:

1. Add masterTrk and masterComms to the COE maintained list of
servers if they are not already there.

2. Check to see if masterTrk or masterComms already exist in the
network host table. If so, processing is completed.

3. Otherwise, ask the operator if this is the server platform for
masterTrk and masterComms.

4. If the operator answers "no" to the previous question, processing is
complete.

5. If the answer is "yes," update the network host table to contain
masterTrk and masterComms as aliases for the machine being
loaded.

Note that this approach does not require the server (sys1) to be loaded prior to
the client (garland). Furthermore, the site administrator can later change the
configuration because all necessary information is available to the System
Administrator software. Also note that the segment does not require the actual
hostnames or IP addresses.

Hostnames are site specific and can not be predicted in advance. Therefore, the
COE requires that segments use meaningful symbolic names as illustrated here
instead of making assumptions about a specific hostname, or naming
convention.

5.5.20 Permissions

The Security Administrator software provides the ability to describe objects
(files, data fields, executables, etc.) which are to be protected from general
access. This information is used to create profiles which limit an operator's
ability to read or modify files. Applications may query the security software to
determine the access permissions granted to the current user. The Permissions
file is the mechanism for segments to describe objects and permissions to grant
or deny for the objects.

This descriptor is a sequence of lines of the form:

object name:permission abbreviation:permission

object name is the item to be controlled, permission is the type of access to grant or
deny (add, delete, read, etc.), and permission abbreviation is a single character
abbreviation for the permission.

Segment Descriptors

DII COE I&RTS: Rev 2.0 October 23, 1995 5-73

Permission abbreviations specified for an account group must agree with all
segments which become part of the group. The following are reserved
abbreviations and their meaning:

Segment Descriptors

5-74 October 23, 1995 DII COE I&RTS: Rev 2.0

A - Add
D - Delete
E - Edit
P - Print
R - Read
V - View
X - Transmit

Segments may use additional abbreviations as required.

For example, suppose a segment generates reports that are to be protected.
Permissions to grant or deny for reports are delete, print, read, or archive. The
proper Permissions file is (Z is used to indicate archive permission in this
example):

Reports:D:Delete:P:Print:R:Read:Z:Archive

If the Permissions file is missing, the security software will report that for the
requested object, no access permissions are to be granted.

5.5.21 PostInstall

Most of the work required to install segments is performed by the COE
installation software through information contained in the descriptor directory.
However, additional segment dependent steps must sometimes be performed.
PostInstall is an executable, either a script or a compiled program, that
segment developers may provide to handle segment specific installation
functions after the segment has been copied to disk and installed by the COE.
During installation, PostInstall may invoke functions (e.g., prompt the user)
described in Appendix C.

The PostInstall descriptor must not do any operations that are performed by
the COE installation software. For security reasons, the PostInstall script is
not run with root level privileges, unless the $ROOT keyword is given in the
Direct descriptor.

Obsolete: Previous versions of the COE allowed PostInstall to
run with root privileges. This capability is no longer the default.
The $ROOT keyword must be used instead.

Segment Descriptors

DII COE I&RTS: Rev 2.0 October 23, 1995 5-75

5.5.22 PreInstall

The PreInstall descriptor file is identical to PostInstall except that it is
invoked by the installation software before the segment is loaded onto the disk. It
must not do any operations that are performed by the COE installation software.
For security reasons, the PreInstall script is not run with root level privileges,
unless the $ROOT keyword is given in the Direct descriptor.

Obsolete: Previous versions of the COE allowed PreInstall to
run with root privileges. This capability is no longer the default.
The $ROOT keyword must be used instead.

5.5.23 PreMakeInst

PreMakeInst is an optional executable program or script that is invoked by the
MakeInstall tool. It's purpose is to allow a segment to perform "cleanup"
operations, such as deleting temporary files, before MakeInstall writes the
segment to the distribution media. MakeInstall sets the environment variables
INSTALL_DIR, MACHINE, MACHINE_CPU, and MACHINE_OS prior to invoking
PreMakeInst.

5.5.24 Processes

Use the Processes descriptor to identify background processes (see
subsection 5.7 below). The format of the descriptor is a keyword which identifies
the type of process, followed by a list of processes to launch in the form

process {parameters}

where process is the name of the executable to launch, and parameters are optional
process dependent parameters. Output from the process is piped to /dev/null.
For example, suppose TestProc is a background process which accepts two
parameters, -t and -c. It will be launched in a manner equivalent to

TestProc -t -c >& /dev/null &

Valid keywords to identify process type are:

$BOOT specify a list of processes to launch at boot time
$BACKGROUND specify a list of background processes
$SESSION specify a list of login session processes
$SESSION_EXIT specify a list of processes to run prior to terminating a

login session

Segment Descriptors

5-76 October 23, 1995 DII COE I&RTS: Rev 2.0

Executables are assumed to be in the segment's bin subdirectory. The $PATH
keyword can be used to indicate a different location. The syntax for the $PATH
keyword is

$PATH:pathname

where pathname may be either a relative or an absolute pathname. If the
pathname is relative, it is relative to the segment's home directory.

5.5.25 ReleaseNotes

Use the ASCII file ReleaseNotes to provide information useful to an operator
in understanding the new functionality being provided by the segment, or the
problems being fixed. It is not a help file, nor is it information targeted to the
system integrator. Therefore, it must not reference problem report numbers,
version numbers, release dates, individuals or companies, point of contact, or
similar information. (This type of information is contained elsewhere, such as in
the VERSION file, and duplication of information may lead to conflicting or
confusing information for the operator.) The ReleaseNotes file must not
contain any tabs or embedded control characters.

An example of a "poor" ReleaseNotes file is

Release: 5.6.3
Point of Contact: John Doe, Tritron Company
Phone: (619) 555-1234

1. Implemented NCR #302
2. Added check for memory overflow
3. Fixed problem with double scrolling in STR #307

An example of a "good" ReleaseNotes file is

This release fixes two known problems:

(a) Calculation of range and bearing for polar latitudes
has been corrected

(b) Display of garbled latitude/longitude in the Track Summary
display for ownship has been corrected

The following new features are added with this release

1. Search and Rescue TDA added.

2. Option added to restrict operator deletion of comms
messages to only those created by the operator.

Segment Descriptors

DII COE I&RTS: Rev 2.0 October 23, 1995 5-77

5.5.26 ReqrdScripts

Use the ReqrdScripts descriptor to define the files that establish the runtime
environment (account group segment types), or to define files to extend the
runtime environment (all other segment types). For account group segments, the
syntax is one or more lines of the form:

script name:C | L

where C means to copy and L means to create a symbolic link. This flag is used
when login accounts are created to either copy environment files to the user's
login directory, or to create a symbolic link. There can be a maximum of 32
scripts. A script name is restricted to a maximum length of 32 characters.

For example, the ReqrdScripts file for the System Administrator account
group is

.Xdefaults:C

.c_p:C

.cshrc:C

.login:C

.mwmrc:C

.xsession:C

The descriptor format for segment types other than account group is slightly
different:

script name:env ext name

where script name is the name of a script in the affected account group's Scripts
subdirectory, and env ext name is the name of an environment extension file in
the present segment's Scripts subdirectory.

For example, assume a segment loaded under /h/TstSeg with a segment
prefix TST is to be added to the System Administrator application, and it
requires extending the .cshrc file. The proper ReqrdScripts entry is:

.cshrc:.cshrc.TST

The installation tools will insert the statements

if (-e /h/TstSeg/Scripts/.cshrc.TST) then
source /h/TstSeg/Scripts/.cshrc.TST

endif

Segment Descriptors

5-78 October 23, 1995 DII COE I&RTS: Rev 2.0

into the file /h/AcctGrps/SysAdm/Scripts/.cshrc. When the segment
TstSeg is deleted, the installation tools will remove these statements.

Obsolete: Earlier releases of the COE provided a $PATH keyword
to indicate where script files were located relative to the segment's
home directory. This method is obsolete and will be phased out.
Full COE compliance requires adherence to Figure 5-2.

5.5.27 Requires

Segment dependencies are stated through the Requires descriptor. The format
is:

[$HOME_DIR:pathname]
segment name:prefix:home dir:[version{:patch}]

Segments will not be loaded until all segments they depend upon are loaded.
For this reason, the parent segment for an aggregate must not list child segments
in the Requires descriptor.

The optional $HOME_DIR keyword is used in situations where a segment must
be loaded onto the disk in a particular place. This technique should be avoided.

For example, assume the segment TEST must be installed in the directory
/home3/tmp/TEST, it requires version 3.0.2 of segment SegA with patches P1
and P4, and also requires SegB version 5.1.1. The Requires descriptor is

$HOME_DIR:/home2/tmp/TEST
SegA Name:SEGA:/h/SegA:3.0.2:P1:P4
SegB Name:SEGB:/h/SegB:4.1.1

In some cases, it may be possible that a segment dependency can be fulfilled by
one or more segments. This is indicated by bracketing such segments with braces
and using the keyword $OR between acceptable alternatives.

As an example, suppose the segment TEST above has a dependency that can be
satisfied by SegA, or the combination of SegB and SegC. The proper Requires
descriptor is

$HOME_DIR:/home2/tmp/TEST
{

SegA Name:SEGA:/h/SegA
$OR

SegB Name:SEGB:/h/SegB
SegC Name:SEGC:/h/SegC

Segment Descriptors

DII COE I&RTS: Rev 2.0 October 23, 1995 5-79

}

Multiple bracketed alternatives may appear in the same descriptor.

Obsolete: In earlier releases, the parent segment for a child had to
be listed in the Requires descriptor. This is no longer required
because by virtue of naming the aggregate parent in SegName,
there is an implied dependency.

5.5.28 Security

The Security descriptor contains a single entry indicating the highest
classification level for the segment (UNCLASS, CONFIDENTIAL, SECRET, TOP
SECRET). If the segment contains items with multiple classification levels, the
highest classification level must be specified.

Note: This file is used only to determine whether or not software
should be loaded onto a workstation. It should not be confused
with data labeling or other security features provided by trusted
systems.

5.5.29 SegChecksum

The file SegChecksum is an optional file created by integration software. It
contains information necessary for the System Administrator software to
perform an integrity check on the installed software. If the file does not exist, the
integrity check can not be performed on the segment.

5.5.30 SegInfo

SegInfo is an ASCII descriptor file which contains segment descriptor
information in one or more sections. Table 5-2 lists the available sections. Refer
to subsection 5.5 above for more information.

5.5.31 SegName

The SegName descriptor provides the following information:

¥ segment type ($TYPE keyword)
¥ segment name ($NAME keyword)
¥ segment prefix ($PREFIX keyword)
¥ segment attributes ($TYPE keyword)

Segment Descriptors

5-80 October 23, 1995 DII COE I&RTS: Rev 2.0

¥ if applicable, affected account group, or affected segment for patches
($SEGMENT keyword)

¥ if applicable, name of parent or child segments ($PARENT, $CHILD
keywords)

The keywords $TYPE, $NAME, and $PREFIX are required for each SegName
descriptor. Additional keywords required depend upon segment type. COE
component segments may not contain $SEGMENT, $PARENT, or $CHILD
keywords. All other segments must have one $PARENT line, or one or more
$CHILD lines, or one or more $SEGMENT lines.

$TYPE

The syntax for segment type is as follows:

$TYPE:segment type[:attribute]

where valid segment types are

COTS
ACCOUNT GROUP
SOFTWARE
DATA
PATCH

and valid segment attributes are

AGGREGATE
CHILD
COE CHILD
COE PARENT

Segment types are mutually exclusive; only one segment type may be given.
Segment attributes are also mutually exclusive.

AGGREGATE is used to indicate that the segment being defined is the aggregate
parent segment. It is valid only for account group, data, and software segment
types. Aggregates must list one or more child segments with the $CHILD
keyword. The COE does not allow an aggregate of aggregates. That is, it is not
valid for Aggregate A to have a child B which is also an aggregate.

CHILD is used to indicate that the segment being defined is an aggregate
subordinate segment. The parent segment must be listed using the $PARENT
keyword.

Segment Descriptors

DII COE I&RTS: Rev 2.0 October 23, 1995 5-81

COE PARENT is used to indicate that the segment being defined is the primary
COE segment. It's home directory will be /h/COE.

COE CHILD is used to indicate that the segment being defined is a COE
component segment other than the parent. The installation tools will verify that
the segment is an authorized COE component and if not will reject the segment.

Segment Descriptors

5-82 October 23, 1995 DII COE I&RTS: Rev 2.0

$NAME

The syntax for the $NAME keyword is

$NAME:name

where name is a string of up to 32 alphanumeric characters. Embedded spaces
may be used for readability, but the string must not contain tabs or other control
characters.

$PREFIX

The syntax for $PREFIX is

$PREFIX:segment prefix

$SEGMENT, $CHILD, $PARENT

The syntax for these three keywords is the same.

keyword:name:prefix:home dir

The descriptor file may contain one and only one $PARENT keyword. Multiple
affected segments or child segments may be listed by listing each segment on a
separate line.

Obsolete: For backwards compatibility, $COMPONENT is equivalent
to the $CHILD keyword. $COMPONENT is obsolete and will be
phased out.

5.5.32 SegType

Obsolete: SegType has been replaced by the SegName descriptor
file. SegType is supported for backwards compatibility, but will
be phased out in a later release. Full COE compliance requires use
of SegName instead of SegType.

5.5.33 Validated

The COE requires strict adherence to integration and test procedures to ensure
that a fielded system will operate correctly. To facilitate integration and testing,
the VerifySeg tool creates the file Validated to confirm that a segment has
been tested for COE compliance. Subsequent tools in the development,

Segment Descriptors

DII COE I&RTS: Rev 2.0 October 23, 1995 5-83

integration, and installation process use this file to determine if a segment has
been altered, thus indicating that the segment needs to be revalidated.

The following information is captured:

¥ the version of VerifySeg used to validate the segment
¥ the date and time validation was performed
¥ who performed the validation
¥ a count of all errors and warnings produced by VerifySeg for the

segment
¥ a checksum computed to enable detection of modifications made after the

segment was validated.

5.5.34 VERSION

The format of the VERSION descriptor is

version #:date[:time]

where version # is the version number for the segment, date is the version date (in
mm/dd/yy format), and time is an optional time stamp (in the format hh:mm).
Version numbers must adhere to the rules defined in subsection 3.1.

Segment Installation

5-84 October 23, 1995 DII COE I&RTS: Rev 2.0

5.6 Segment Installation

Segment installation requires some form of electronic media (tape, disk, etc.) that
contains the segments, and that has a table of contents which lists the available
segments. MakeInstall is the tool which creates this electronic media.
However, it is important to identify the operations (e.g., compression)
performed on segments, and the sequence in which these operations are
performed.

Installation requires reading the table of contents created by MakeInstall,
selecting the segments or variants to install, and then copying the segments to
disk. Segments may actively participate in the installation process through
PostInstall, PreInstall, and DEINSTALL scripts. This subsection details
both the MakeInstall tool, and the installation sequence.

5.6.1 MakeInstall Flowchart

Figure 5-13 shows the sequence of operations performed by the MakeInstall
tool.

1. MakeInstall is given a list of segments that are to be processed. For
each segment in the list:
a) If the segments is not already on disk, it is extracted from the

repository and placed in a temporary location.
b) A check is made to ensure that the segment is a valid segment.
c) If the segment is invalid, an error message is displayed. If the

segment was checked out of the repository and placed in a
temporary location, the temporary segment is deleted.
MakeInstall then terminates.

2. If all segments are valid, a worklist is created. The worklist is sorted to
ensure that segments which have dependencies appear in the list after
the segments they depend upon. This ensures that at install time, a tape
will not have to be rewound because of segment dependencies.

3. For all segments in the worklist:
a) Prepare the segment by executing the segment's PreMakeInst

descriptor if it exists. PreMakeInst is prevented from modifying
the segment's SegDescrip. Otherwise, PreMakeInst could
invalidate the segment validation step above.

b) Unless the segment specifies otherwise, all segment subdirectories
except SegDescrip are compressed.

c) The compressed segment and its descriptor directory are written out
to the specified electronic media.

Segment Installation

DII COE I&RTS: Rev 2.0 October 23, 1995 5-85

d) If the segment was extracted from the repository and placed in a
temporary location, the temporary segment is deleted.

Segment Installation

5-86 October 23, 1995 DII COE I&RTS: Rev 2.0

T

F
Order

Worklist

FValid
Seg?

Start

For All
Segs Requested

Extract
Segment

T

Abort

Stop

Write out Seg

Prepare Seg

Compress Seg

For All
Segs In Workist

T

F

Delete Seg

Delete
Seg?

Abort

Issue Error Msg

Delete
Seg?

Delete Seg

Stop

Figure 5-13: MakeInstall Flowchart

Segment Installation

DII COE I&RTS: Rev 2.0 October 23, 1995 5-87

5.6.2 Installation Flowchart

Figure 5-14 is a detailed flowchart for the segment installation process. The
sequence of PreInstall, PostInstall, and DEINSTALL executions is the
most significant aspect of the flowchart. Directives contained in the Direct
descriptor may affect the sequence (e.g., use of $REBOOT and $ROOT keywords),
but such details are omitted for clarity. The installation software automatically
removes patches when a segment is replaced, and deletes any temporary space
($TEMPSPACE keyword) allocated for the segment. These details are also
omitted for clarity.

1. A load device is selected (tape, disk, etc.) and the table of contents
created by MakeInstall is read.

2. Segments found in the table of contents which do not match the target
platform are removed from consideration. Similarly, a check is made to
ensure that an operator can not inadvertently load a segment for which
he is not authorized. The environment variables MACHINE,
MACHINE_CPU, and MACHINE_OS are set to indicate the hardware
platform. (MACHINE is now obsolete.)

3. The media may have variants defined. If variants are defined:
a) The operator may select a variant to load.
b) If a custom installation is desired, the operator is presented with the

table of contents with all segments in the selected variant
highlighted. The operator may add or delete segments from this list.

If variants are not defined, the operator is shown the table of contents
and must manually select the desired segments.

4. For all segments selected, a check is made to see if the segment is
loadable. To be loadable, all dependent segments must either be
selected or already on disk. Conflicting segments must not be selected,
nor can they already be loaded on disk.

5. For all segments selected:
a) The installation tools determine where to load the segment. The

environment variable INSTALL_DIR is set to the absolute pathname
for where the segment will be loaded. Segments can not assume that
any environment variables other than MACHINE, MACHINE_CPU,
MACHINE_OS, and INSTALL_DIR are defined, or those set to refer to
disk space (COE_TMPSPACE, DISK1, etc.).

b) If an old version of the segment already exists on disk, the old
segment's DEINSTALL script is run.

Segment Installation

5-88 October 23, 1995 DII COE I&RTS: Rev 2.0

c) The new segment's PreInstall script is loaded and executed. Note
that the new segment is not yet on disk.

d) The old segment is deinstalled by the installation tools.
Modifications made through the descriptor files are reversed.

e) The old segment is deleted from disk.
f) The new segment is loaded from tape onto disk and decompressed.
g) The installation tools process commands from the new segment's

descriptor files.
h) The new segment's PostInstall script is run. PostInstall may

invoke load time tools described in Appendix C (e.g., to prompt the
user).

i) A status message is displayed indicating whether or not the segment
was successfully installed.

6. If any of the segments installed requested a reboot, the operator is
notified and asked for confirmation. If the operator confirms, the system
is rebooted.

5.6.3 Database Creation

The DBMS should be operating in its maintenance mode (e.g. Oracle’s command
STARTUP DBA EXCLUSIVE) when an application server segment is installed.
This prevents users from accessing data objects during their creation and
possibly corrupting either the segment or the database instance.

Table 5-3 shows, in broad outline, the sequence of steps performed by an
application’s server segment when it is creating the database. The first three
steps must be performed by a database account with DBA privileges. The owner
account (and there may be more than one) should be restricted so it can only
create objects in the tablespaces designated for its use. The remaining steps
should be performed by the owning account, and without DBA privileges. This
ensures that data objects are not inadvertently created in tablespaces belonging
to other databases.

Segment Installation

DII COE I&RTS: Rev 2.0 October 23, 1995 5-89

Table 5-3: Database Creation

Allocate storage. This step is performed by the DBA and creates the physical
storage needed for the database. Developers shall not assume any particular disk
configuration when creating data files and shall create all files in the segment’s
DBS_files subdirectory. Developers may create multiple storage areas (i.e.
Oracle tablespaces) to separate different groups of data objects. Developers shall
not modify the core database storage areas without permission of the DISA Chief
Engineer.

Create owner. This step is performed by the DBA and creates the account or
accounts that will own the data objects. Their access will be limited to the storage
areas created by the segment or to public storage areas (e.g. Oracle tablespace
TEMP or USERS). Owners shall not have access to system storage areas (e.g.
Oracle tablespace SYSTEM). No permanent objects will be created in public
storage areas by database segments. No objects will be created in system storage
areas. Owners shall not have database administrator privileges.

Create roles. This step is performed by the DBA and creates the roles necessary
to manage user access. Developers should match the role definitions to the access
needed by applications. Developers should not grant privileges that allow users
to manipulate the data objects’ structure (e.g. Oracle’s Alter privilege). Users
should not be allowed to create their own indexes either.

Function User SQL Command

Allocate Storage DBA create tablespace ... datafile
...

Create Owner DBA create user ...

Create Role(s) DBA create role ...

Create Database Owne
r

create schema

Load Data Owne
r

insert into table

Grant Access Owne
r

grant ... on table ... to role

Disconnect
Owner

DBA revoke CONNECT from ...

Segment Installation

5-90 October 23, 1995 DII COE I&RTS: Rev 2.0

Create database. This step is performed by the Owner and creates tables, views,
indexes, constraints, sequences, and any other data objects that are part of the
database. If the developer has defined multiple owners, a separate script should
be provided for each one. No objects will be created that will be owned by the
DBMS default accounts (Oracle’s SYS or System, Sybase’s sa) or by some other
account intended to be a DBA.

Load data. This step is performed by the Owner and fills the data objects
previously created. Although index and constraint creation were defined as
occurring in the previous step, developers may defer them until the data load is
complete to improve performance.

Grant access. This step is performed by the Owner and grants the appropriate
access permissions on data objects to the roles previously defined. Grants shall
not be made directly to users accounts. Grants shall not be made to general
purpose users (e.g. Oracle’s PUBLIC user). Only the owner or the DBA are
allowed to administer grants. Other users will not be given permissions to
further disseminate grants.

Disconnect Owner. The last step – revoking database connection privileges from
the owner upon completion of the load process – is performed by the DBA. It
ensures that users cannot connect to the database as the owner of the data, and
thereby prevents users from modifying schemas, indexes, or grants. Developers
shall also require the database administrators to change the password of the
owner account upon completion of the database creation.

5.6.4 Database Segment Deinstall

Deinstallation has a different flavor with databases. First, data is dynamic. As
users make changes to their databases, sites’ data sets will diverge from each
other. It is unlikely that any two operational sites will have exactly the same data
at any point in time. Second, inter-database dependencies restrict the ability to
remove segments modularly.

However, developers need to provide the capability to remove the application’s
server segment from the Database Server. This means removing the database
and all traces of its presence from within the DBMS. The following steps, at a
minimum, must be accomplished.

Segment Installation

DII COE I&RTS: Rev 2.0 October 23, 1995 5-91

Function User SQL Command

Remove roles DBA drop role ...

Remove objects owner drop schema ...

Remove storage DBA drop tablespace ...

Remove owner DBA drop user ...

Table 5-4: Database DeInstall

Within the Oracle server, combining the removal of storage and of data objects
by using the Oracle command ‘drop tablespace x including contents’ is not
recommended. Developers should use the ‘drop schema’ command followed by
a ‘drop tablespace’ command instead.

Segment Installation

5-92 October 23, 1995 DII COE I&RTS: Rev 2.0

copy new Segment to disk

For All
Segs Selected

A

Run old DEINSTALL

Run new PreInstall

Deinstall old Segment

Delete old Segment

Decompress new Segment

Run new PostInstall

Display Status Report

Install new Segment

Stop

Reboot
if

Requested

For All
Segs Selected

Reduce list by Hardware/Security

Start

Select Load Device

Read TOC & Seg Descriptors

Variants?

Select Variant

Customize?

Auto Select Manual Select

YN

N

Y

Loadable?

A

Y N Error
Handler

Stop

Figure 5-14: Installation Flowchart

Extending the COE

DII COE I&RTS: Rev 2.0 October 23, 1995 5-93

5.7 Extending the COE

Most properly designed segments will not require any extensions to the COE,
except for the need to add icons and menu items. This subsection describes some
of the more commonly required extensions, and techniques for addressing less
frequently encountered extensions.

5.7.1 Adding Menu Items to the Desktop

Adding menu items is usually required only when installing a software
segment. Two pieces of information are required: the name of the affected
account group(s) and the menu items to add. Refer to the SegName and Menus
descriptors.

The installation software appends the contents of the segment's menu files to the
corresponding menu files in the affected account group(s). This forms a master
template in the affected account group's data/Menus subdirectory which is
subsequently used to create operator profiles. Segments should use the APPEND
directive in the menu files to add items. Refer to the Executive Manager API
documentation for the format of menu files.

Previous COE releases included a system menu bar that was displayed at the top
of the screen, just below a security banner. The COE no longer automatically
provides a system menu bar. Segments which require a system menu bar must
use the Executive Manager APIs to explicitly add menu items when the
application initializes. Developers may only add menu items that are contained
within the current user's profile. The APIs are constructed to prevent addition of
menu items to the system menu bar that are not contained in the current user
profile.

Segments which use a system menu bar must also use the APIs to remove their
system menu bar additions when the application terminates. Refer to the Style
Guide for guidance on when it is appropriate to use a system menu bar versus
desktop icons.

Obsolete: Previous COE releases automatically provided a system
menu bar. Applications must now use the Executive Manager APIs
to explicitly request a system menu bar.

5.7.2 Adding Icons to the Desktop

Extending the COE

5-94 October 23, 1995 DII COE I&RTS: Rev 2.0

As with menus, adding icons is usually required only for software segments.
Two pieces of information are required: the name of the affected account group
and the icons to add. Refer to the SegName and Icons descriptors above.

The installation software appends the contents of the segment's icon files to a
master list located with affected account group(s). This forms a master template
in the affected account group's data/Icons subdirectory which is subsequently
used to create operator profiles. Refer to the Executive Manager API
documentation for the format of icon files.

Refer to the Style Guide for guidance on when it is appropriate to use a system
menu bar versus desktop icons.

5.7.3 Modifying Window Behavior

The Style Guide defines required window behavior for all segments. X Windows
controls window behavior through a collection of resource definitions. The
resource definitions consulted are as follows:

1. Files located in the directory /usr/lib/X11/app-defaults.
2. Files in the directory pointed to by XAPPLRESDIR.
3. Resources inherited from the display's root window.
4. The file $HOME/.Xdefaults.
5. The file pointed to by XENVIRONMENT.

X Windows processes the controls in the order shown, and in such a way that
the last control specified overrides any preceding controls.

The COE must carefully control resources to avoid conflicts between segments.
Therefore, segments shall not place files in directories "owned" by X Windows
(e.g., /usr/lib/X11/app-defaults.) Instead, segments shall place their
resources in the subdirectory data/app-defaults underneath the segment
directory as shown in Figure 5-2. At install time, the installation tools create a
symbolic link underneath /h/data/local/app-defaults to each of the files
contained in the segment. For this reason, segments must use their segment
prefix to name all app-defaults used in this manner.

Figure 5-2 also shows that segments may place additional fonts underneath the
segment's data/fonts subdirectory. At install time, the installation tools
create a symbolic link underneath /h/data/local/fonts to point to each of
these files. Segments shall use their segment prefix to name font files used in this
way.

Extending the COE

DII COE I&RTS: Rev 2.0 October 23, 1995 5-95

The environment variables XFONTSDIR, XAPPLRESDIR, and XENVIRONMENT
are established by the COE. Segments shall not modify their value. They are set
as defined in section 5.3.

The .Xdefaults and .xsession files are extended through the
ReqrdScripts descriptor. The installation tools use xrdb to merge the
segment's .Xdefaults extensions with the affected account group, and source
to merge in the .xsession additions. The installation tool performs the
additions in such a way that they do not override the environment established
by the affected account group.

Motif follows a similar strategy for setting resources. The following resources are
consulted in the order shown:

1. Files located in /usr/lib/X11/app-defaults/Mwm.
2. Files located in $HOME/Mwm.
3. Properties inherited from the root window.
4. Properties found in $HOME/.Xdefaults.
5. Properties found in the file pointed to by XENVIRONMENT.

Segments may specify Motif resources only through a .Xdefaults
environment extension file, or through a Mwm environment extension file if the
affected account group supports it. Segments may not place files in any directory
"owned" by Motif (e.g., /usr/lib/X11/app-defaults/Mwm), nor may
segments alter the account group's .mwmrc resource file.

To summarize, for COE compliance:

¥ Segments shall not modify vendor distributed X Windows or Motif
system resources (Xdefaults, rgb.txt, etc.).

¥ Segments shall not place files in the X or Motif distribution directories
(e.g., /usr/lib/X11/app-defaults).

¥ Segments shall use the segment prefix to uniquely name files underneath
the segment's data/fonts and data/app-defaults subdirectories.

¥ Segments shall not modify the COE established setting for XAPPLRESDIR,
XENVIRONMENT, or XFONTSDIR.

¥ Segments shall not modify the affected account group's .mwmrc file.

5.7.4 Using Environment Extension Files

Extending the COE

5-96 October 23, 1995 DII COE I&RTS: Rev 2.0

The ReqrdScripts descriptor allows extensions to the affected account group's
"dot" files (.cshrc, .login, etc.). This is most frequently done to add
environment variables. However, unregulated use of environment variables is
detrimental to the system. The amount of space the operating system reserves for
environment variables is limited, and loading a large number of segments could
quickly exhaust this scare resource. Each time a process is spawned, the child
process inherits environment variables from the parent. Resolving a large
number of environment variables can take a significant amount of time and
hence degrade system performance.

COE compliance requires adherence to the following guidelines:

¥ Do not include development environment variables in runtime
environment scripts or extension files.

¥ Use short names for environment variables. Unix stores environment
variable names as character strings in the environment space, so the
longer the variable name, the faster environment variable space is
exhausted.

¥ Reuse environment variables already defined by the COE or affected
account group.

¥ When feasible and efficient, use operating system services (such as pipes
and streams) or data files to communicate with other segments, or
between components within the same segment.

¥ Do not use environment variables to communicate control data between
components within the same segment. Use operating system services or
data files.

¥ Do not define environment variables which can be derived from other
environment variables. For example, to define MYSEG_BIN through

setenv MYSEG_HOME /h/MySeg
setenv MYSEG_BIN $MYSEG_HOME/bin

wastes environment variable space. The COE guarantees a predictable
directory structure, and $MYSEG_HOME/bin can be used directly instead
of $MYSEG_BIN.

¥ When feasible, have segment components create environment variables
once they begin executing through putenv or through "sourcing" a file
containing needed environment variables. This approach ensures that

Extending the COE

DII COE I&RTS: Rev 2.0 October 23, 1995 5-97

segment specific environment variables are inherited locally by a single
segment, not globally by all segments.

5.7.5 Using Community Files

Community files are any files that reside outside a segment's assigned directory.
(Data files owned by the segment underneath /h/data are considered an
exception.) Most required community file modifications are handled
automatically by the installation software through descriptor directory files. The
Community descriptor is used when the installation software can not provide
the modifications required.

All community file modifications are carefully scrutinized at integration time
because of the potential for conflict with other segments or the runtime
environment. Developers should seek guidance from the DISA Chief Engineer
before modifying any COTS community files (those owned by Unix,
X Windows, Motif, Oracle, Sybase, etc.).

5.7.6 Defining Background Processes

When an operator logs in, Unix uses the various "dot" files to establish a runtime
environment context. The Runxxx program from the appropriate account group
is executed to launch all processes required to complete the establishment of the
runtime environment. Segments use the Processes descriptor file to add other
background processes to the runtime environment.

The COE differentiates between four different types of processes:

Boot Processes launched when the computer is booted or
rebooted. Designate boot processes with the $BOOT
keyword.

Background Processes launched the first time an operator logs in after a
reboot; these processes remain active in the background
even after the operator logs out. Designate background
process with the $BACKGROUND keyword.

Session Processes launched when an operator logs in and remaining
active only while the operator is logged in. Designate
session processes with the $SESSION keyword.

Transient Processes launched in response to operator selections from
an icon or menu. Transient processes typically display a
window on the screen, perform some specific function in

Extending the COE

5-98 October 23, 1995 DII COE I&RTS: Rev 2.0

response to operator actions, and then terminates. In some
cases, the processes spawned may stay active for the length
of the session, but in all cases, transient processes are
terminated by the Executive Manager when the operator
logs out. Designate transient processes through the Menus
and Icons descriptors.

Note: Because of the potential impact to other segments, system
performance, and system integrity, boot and background processes
require prior approval by the DISA Chief Engineer. Boot processes
are strongly discouraged.

5.7.7 Reserving Disk Space

Segments frequently require additional disk space to accommodate growth over
time as the system operates. For example, communications logs are empty when
the system is initially installed, but will occupy space as messages are received
and logged. Segments may reserve additional disk space through the Hardware
descriptor.

The installation software keeps track of how much disk space is actually in use
and how much is reserved. A segment will not be installed if the amount of
space it occupies, plus any space it reserves, exceeds the amount of unreserved
disk space. The installation software allows the operator to select how full the
disk can be (80, 85, 90, or 95% of capacity). These safeguards are in place to
avoid filling up the disk, but segments are responsible for detecting when the
amount of space requested is not available.

In rare situations, segments may require space on multiple disk partitions. See
the $PARTITIONS keyword for the Hardware descriptor.

5.7.8 Using Temporary Disk Space

Segments may require temporary disk space during segment installation, or
during system operation. Temporary disk space may be requested during
segment installation through the $TEMPSPACE keyword in the Hardware
descriptor. The installation software automatically deletes all files in this
temporary area when segment installation is completed.

The environment variable TMPDIR points to a temporary directory that may be
used during system operation. However, there is a limited amount of disk space
set aside for temporary storage so it must be used sparingly. A better approach
is for segments to store temporary data in their own data subdirectory.

Extending the COE

DII COE I&RTS: Rev 2.0 October 23, 1995 5-99

Segments which use TMPDIR must delete temporary files when they are no
longer required. All files in this directory are automatically deleted when the
system is rebooted.

5.7.9 Defining Sockets

Requests to modify the /etc/services file to add sockets is done through the
COEServices descriptor file. This control point for requests to add socket
names and ports helps avoid conflicts between segments. Port numbers in the
range 2000-2999 are reserved for COE segments. Segments should avoid creating
sockets with port numbers less than 1000 since these are generally reserved for
operating system usage.

5.7.10 Adding and Deleting User Accounts

Segments are not normally allowed to create operator accounts (e.g., Unix user
login accounts). Segments may create system accounts, through the
COEServices descriptor, for the purpose of establishing file ownership.
Operator accounts are normally added to the system through use of the Security
Administrator application. They are customizable by security classification level,
by access permissions granted or denied against application objects, and by
granting or denying access to menu or icon items. The segment descriptors
AcctGroup, Security, Permissions, Menus, and Icons provide these
controls.

Figure 5-3 shows that operator accounts may be global or local. This attribute is
specified when the operator account is created. If the server which contains
operator accounts is down, global operator logins will be unavailable until the
server is restored.

Profiles may also be global or local. This attribute is determined when the profile
is created. If a global profile is not available at login time (e.g., the server is
down), login proceeds but the operator is notified of the problem and the system
is placed in a safe state.

Some segments require the ability to perform additional operations when a user
account is created, or to perform cleanup operations when a user account is
deleted. This is done by using the $ACCTADD and $ACCTDEL keywords in the
Direct descriptor. Due to security implications, both of these keywords require
prior permission from the DISA Chief Engineer.

5.7.11 Adding Network Host Table Entries

Extending the COE

5-100 October 23, 1995 DII COE I&RTS: Rev 2.0

Workstation IP addresses and hostnames are site dependent. Hostnames in
particular are most often selected by the site and usually can not be predicted in
advance. Therefore, segments shall not include any assumptions about a
workstation having a specific name or following any particular naming
convention, nor make any assumptions about a specific IP address class.

Segments should rarely need to add entries to the network host table. Such
entries are usually established by an operator through system administration
functions. For those situations where a segment must do so, the $HOSTS
keyword in the Network descriptor allows IP addresses, hostnames, and aliases
to be added to the network host table. The address may be added to either the
local host table, or to the DNS/NIS+ maintained host table.

Extending the COE

DII COE I&RTS: Rev 2.0 October 23, 1995 5-101

Prior permission must be given by the DISA Chief Engineer to use the $HOSTS
keyword, and permission will be granted only for COE component segments.
VerifySeg will issue a warning for any segment which uses the $HOSTS
keyword.

5.7.12 Registering Servers

Servers are registered with the COE through the $SERVERS keyword in the
Network descriptor. Only COE component segments may register servers. Prior
permission must be given by the DISA Chief Engineer to use the $SERVERS
keyword. VerifySeg will issue a warning for any segment which uses the
$SERVERS keyword, and strictly fail the segment if it is not a COE component
segment.

A segment which needs to determine the location of a server may use the
COEFindServer function (see Appendix C).

5.7.13 Modifying Network Configuration Files

Setting up a network requires modification of several network configuration files
to set netmasks, identify subnets and routers, etc. Proper network configuration
is essential for proper system operation and performance. For this reason, only
COE component segments may establish network configuration parameters. This
is accomplished through the Network descriptor file.

Prior approval from the DISA Chief Engineer is required. VerifySeg will issue
a warning for any segment which uses the Network descriptor, and strictly fail
the segment if it is not a COE component segment.

5.7.14 Establishing NFS Mount Points

NFS mount points are defined through the $MOUNT keyword in the Network
descriptor. System performance can be seriously impacted by establishing
mounted file systems. Poor design choices that result in several different mount
points can create single points of failure, or result in sequencing problems when
the system is loaded or rebooted. For these reasons, mount points are restricted
to COE component segments.

Prior approval from the DISA Chief Engineer is required to create NFS mounted
file systems. VerifySeg will issue a warning for any segment which uses the
$MOUNT keyword, and will strictly fail the segment if it is not a COE component
segment.

Extending the COE

5-102 October 23, 1995 DII COE I&RTS: Rev 2.0

5.7.15 License Manager

The COE contains a license manager to administer COTS licenses. Vendors take
a variety of approaches in how they control and administer licenses. For this
reason, the techniques for automating license management are still under
development and are being handled manually. Refer to the DISA Chief Engineer
for further assistance in creating a segment which requires a license manager.

5.7.16 Shared Libraries

The COE strongly encourages the use of shared libraries to reduce memory
requirements. Because of the different approaches taken by various legacy
systems, specific techniques and direction are under development. Refer to the
DISA Chief Engineer for guidance in using shared libraries, especially those
associated with COTS products such as X and Motif.

5.7.17 Character Based Interface

Support for character based interfaces is provided through the CharIF account
group. An account is established for individual users through the same process
as all other accounts, but the account is noted as a character based interface
account only. Operator profiles may be set up, but only those segments which
support a character based interface (see the Direct descriptor) are accessible.

The remote user connects to the designated server through a remote login
session. Once connected, the user is prompted for a login account and password.
A menu of options, such as

0) Exit
1) AdHoc Query
2) TPFDD Edit

Enter Option:

is presented to the user. The option selected is executed and results are
displayed on the user's remote, character based display.

5.7.18 Remote versus Local Segment Execution

Segments which are remotely launchable are designated by the $REMOTE
keyword in the Direct descriptor. This feature is not currently implemented,
but is reserved for future implementation. Developers are encouraged to use the
$REMOTE keyword and design their segments to account for local versus remote

Extending the COE

DII COE I&RTS: Rev 2.0 October 23, 1995 5-103

execution. Thus, when this feature is fully implemented, developer segments
will be position to take advantage of the capability.

5.7.19 Color Table Usage

The COE must carefully control how the color table is used to avoid objectional
"false color" patterns that may appear when mouse focus changes from one
window to another. The Style Guide gives guidance on what colors to use from a
human factors perspective, but it does not provide guidance on how segments
are to coordinate such usage through the COE.

This document will be expanded to include guidance for color table usage as the
impact of COTS products (such as CDE) are evaluated.

Database Considerations

5-104 October 23, 1995 DII COE I&RTS: Rev 2.0

5.8 Security Considerations

COE-based systems typically operate in a classified environment. Therefore,
security considerations must be addressed both by the COE and the segment
developer. This section describes the security implications from a runtime
environment perspective. It does not address procedural issues such as proper
labeling of electronic media, requirements for maintaining paper trails showing
originating authority, etc.

Certain restrictions described below are a result of how Unix manages file versus
directory permissions. The most specific permission (e.g., on a file) does not
consistently override the least specific permission (e.g., on the file's parent
directory).

This section is evolving as security policies are developed for GCCS and GCSS,
and as legacy systems are migrated to the COE. Further guidance will be issued
as appropriate. Refer to the DISA Chief Engineer for specific security concerns,
or for guidance in segment development in addition to the information
contained here.

5.8.1 Segment Packaging

Segments shall not mix classification levels within the same segment. It is
permissible to create an aggregate that contains segments that are at different
classification levels, but the parent segment must dominate the security level of
any child segments.

Features that are not releasable to foreign nationals shall be clearly identified
through documents submitted to DISA when the segment is delivered. Software
and data which contain non-releasable features shall be constructed so that the
features may be removed as separate segments.

All classified data shall be constructed as separate segments. Developers shall
submit unclassified sample data to DISA, as a separate segment, for DISA to use
during the testing process.

5.8.2 Classification Identification

All segments shall identify the segment's highest classification level in the
Security descriptor. Developers shall submit documentation to DISA which
clearly identifies what features are classified, and at what classification level.

Security Considerations

DII COE I&RTS: Rev 2.0 October 23, 1995 5-105

5.8.3 Auditing

Segments which write audit information to the security audit log shall include
the segment prefix in the output. This is required so that audit information can
be traced to a specific segment.

5.8.4 Discretionary Access Controls

Developers shall construct their segments so that individual menu items and
icons can be profiled through use of COE profiling software. The profiling
software allows a site administrator to limit an individual operator's access to
segment functions by menu item, or by icon.

5.8.5 Command Line Access

Segments shall not provide an xterm window or other access to a command line,
unless prior permission is granted by the DISA Chief Engineer. Segment features
should be designed and implemented in such a way that operators are not
required to directly enter operating system commands. When command line
access is granted, it shall not be "root" access (e.g., privileged user). Situations
requiring superuser access shall require the operator to log in as root.

Segments which provide command line access shall audited entry to and exit
from the command line access mode. Entry to command line access mode shall
require execution of the system login process so that the user is required to enter
a password. For example, the command

xterm -exec login

will create an xterm window that requires the operator to provide a login
account and password.

5.8.6 Privileged Processes

Segments shall minimize use of privileged processes (e.g., processes owned by
root or executed with an effective root user id). In all cases, privileged processes
shall terminate as soon as the task is completed.

5.8.7 Installation Considerations

Segments shall not require PostInstall, PreInstall, or DEINSTALL to run
with root privileges unless permission to do so is granted by the DISA Chief
Engineer.

Database Considerations

5-106 October 23, 1995 DII COE I&RTS: Rev 2.0

Segments shall not alter the umask setting established by the COE.

5.8.8 File Permissions

Segments shall not contain any files directly underneath the segment's assigned
directory. The reason for this restriction is that such files can be modified by an
unauthorized user if the directory permissions are set to octal 777 (as the COE
requires them to be for certain directories).

Segments shall not place any temporary files in the directory pointed to by
TMPDIR unless deletion, alteration, or examination of such files by another
segment or user poses no security concerns.

5.8.9 Data Directories

Segments which contain data that must have world access privileges along with
data that must not have world shall split the data into separate directories
underneath the segment's data directory. File permissions on the separate
directories must be set to prevent unauthorized access to data files.

Database Considerations

DII COE I&RTS: Rev 2.0 October 23, 1995 5-107

5.9 Database Considerations

COE-based systems are typically heavily database oriented. Database
considerations are therefore of paramount importance in properly architecting
and building a system. This section provides more detailed technical
information on properly designing databases and database applications.

5.9.1 Database Segmentation Principles

A COE database server is provided by a COTS DBMS product. It is used in
common by multiple applications. It is a services segment and part of the COE.
However, different sites need varying combinations of applications and
databases. As a result, databases cannot be included in the DBMS segment.
Instead, these component databases are provided in a database segment
established by the developer. The applications themselves are in a software
segment, also established by the developer, but separate from the database
segment. If the data fill for the database contains classified data, that data fill
must be in a separate data segment associated with the database segment.

5.9.1.1 Database Segments

The DBMS is provided as one or more COTS segments. These segments contain
the DBMS executables, the core database configuration, database administration
utilities, DBMS network executables, and development tools provided by the
DBMS vendor. Databases are provided as database segments. These segments
contain the executables and scripts to create a database, and tools to load data
into the database.

The following functional groupings are used to provide database services. The
configuration of COTS segments that provide them may vary depending on the
DBMS and the specific configuration chosen by DISA.

DBMS Server. This provides the DBMS executables, the DBMS’s network
services executables, and the core database. Its components are installed on the
database server.

DBMS Tools. This provides the executables for other DBMS applications (e.g.
Oracle*Forms 4.5 development tools). Its components are installed on the
database server.

DBMS DBA Tools. This segment contains the executables for tools used by
database administrators (e.g. Oracle’s ServerManager). Its components are
installed on the database server.

Database Considerations

5-108 October 23, 1995 DII COE I&RTS: Rev 2.0

DBMS Client Services. This segment contains the client network services for the
DBMS and run-time executables for other DBMS applications (e.g.
Oracle*Forms 4.5 runform executable). It is installed on the network’s
application server. It may be installed on individual workstations.

The following specific segments are prepared by developers to provide
databases within a COE-based system configuration.

Application Database Segment. This segment contains a component database. It
is installed on the database server.

Application Client Segment. This application segment contains applications that
access a database created by an Application Database Segment. It is installed on
the network’s application server or on individual workstations.

Application Data Segment. This segment contains the data fill of a component
database when that data fill must be separated from the Application Database
Segment. It is installed on the database server.

5.9.1.2 Database Segmentation Responsibilities

Three groups are involved in the implementation of database segments: DISA,
the application developers, and the sites’ database administrators. The
developers and DISA work together to field databases and associated services
for the DBAs to maintain. DISA provides the DBMS as part of the COE.
Developers provide the component databases. Sites manage access and maintain
the data. Users interact with the databases through mission applications and
may, depending on the application, be responsible for the modification and
maintenance of data in the databases.

5.9.1.2.1 DISA

DISA provides the core database environment in which the applications’
segments will be integrated. The basic functionality provided with that core
environment gets the database server ready for developers to add their
databases and for the sites’ database administrators to add and administer users.

The initial database contains the data dictionary, rollback segments, tools, and
user and temporary tablespaces. The application servers are provided with set
up with the DBMS client environment so that users need only source the
environment shell script to be able to connect to the server. Finally, the initial
operating system and DBMS accounts are established on the database server for
the sites’ database administrators.

Database Considerations

DII COE I&RTS: Rev 2.0 October 23, 1995 5-109

5.9.1.2.2 Developers

Developers are responsible for providing everything associated with their
application’s database. Developers must define the owner account(s) for their
base data objects. They must define and create the data objects within those
owner accounts. Aside from the data proper, developers must determine and
define the access levels and privileges that must exist for their segment’s
database. Database roles shall be used to implement access controls to ease the
maintenance burden on the DBA.

Developers may implement specific auditing within their applications and
databases, but shall not modify the system’s security audits.

Developers shall provide scripts for the DBA’s use to add, modify and remove
users privileges.

5.9.1.2.3 Database Administrators

The System and Database Administrators at each site are responsible for
creating, modifying and removing users’ DBMS and UNIX accounts. For
security and ease of management, a “unitary login” or single account name for
each user for both the operating system and the DBMS is being adopted for
COE-based systems. This means that users cannot use DBMS accounts defined
by developers and that developers cannot assume the existence of any particular
user accounts. It also means, as required by the system Security Policy, that
database actions can be traced to the individual user. Security auditing is the
responsibility of the sites’ DBAs. They are implemented as each site needs using
the audit features provided by the DBMS.

A DBA creates users’ DBMS accounts as part of the process of granting users
access to applications and their associated databases. In order for this to work
properly and smoothly, the developers must provide procedures, scripts, and
instructions for the DBA’s use. Users’ access will change over time and few users
will have access to all applications. The developers’ procedures must support the
addition of users and the revocation of users’ privileges. If an application has
multiple levels of privileges, then multiple procedures must be provided.

5.9.1.3 DBMS Tuning and Customization

The core DBMS instance is configured and tuned by DISA based on the
combined requirements of all developers’ databases taken together. This allows
the DBMS Server Segments to be reasonably independent of particular hardware
configurations and ignorant of specific application sets. It is not tuned or
optimized beyond that.

Database Considerations

5-110 October 23, 1995 DII COE I&RTS: Rev 2.0

The final tuning of the DBMS cannot be accomplished until a complete
configuration is built and it has an operational load. Developers should provide
information into the tuning process, but should not make their applications
dependent on particular tuning parameters. Where a non-standard parameter is
required for operations, developers must provide that information to DISA so
the DBMS services segment can be modified accordingly.

The developers need to communicate any design assumptions and DBMS
configuration requirements which must be incorporated in the DBMS set-up. If,
for example, developers need any settings in the Oracle ‘initGCCS.ora’ file
that are not the default settings for the current DBMS version, that information
needs to be provided to DISA early in the integration process for a particular
release. Based on the impact of the change, a decision can be made whether to
modify the baseline server configuration or to develop a DBMS segment to
accompany the application’s server segment and modify the in-place database
instance.

Similarly, sizing of DBMS workspace, reovery logs, and the users’ temporary
workspace is based on the combination of the requirements of the various
applications that use DBMS services. Developers must communicate their
minimum requirements for these so that the core DBMS is not set to be too small.
Most of the application tools provided by DBMS vendors are incorporated in the
DBMS segment in the functional category of Server Tools. To ensure that needed
tools are available, developers should advise DISA what COTS tools they intend
to use. When such tools are used, the developer must identify the dependency in
the database application segment's Requires file.

Developers shall not modify the core DBMS instance’s configuration. Extensions
or modifications of that configuration require the specific approval of the DISA
Chief Engineer.

If developers modify any of the executable tools (e.g. add User Exits to
Oracle*Forms), then the modified version of the tool does not reside with the
core database services, but becomes a part of the application’s client segment.
This prevents conflicts among different modified versions of a core function. The
maintenance of that modified tool also becomes the responsibility of the
developers.

5.9.2 Database Inter-Segment Dependencies

A key objective of the segmentation approach is to limit the interdependencies
among segments. Ideally, database segments should not create data objects in
any other schema or own data objects that are dependent on other schemas.

Database Considerations

DII COE I&RTS: Rev 2.0 October 23, 1995 5-111

However, one purpose in having a Database Server is to limit data redundancy
and provide common shared data sets. This means that there will usually be
some dependencies among the databases in the federation. This section
addresses the management of such dependencies.

The following principles apply when inter-database dependencies exist:

¥ The database schema within a segment that will own the parent object
will create that object.

¥ The database schema within a segment that will own the child
(dependent) object will create that object.

¥ Database schemas with inter-database dependencies will strive to keep
those dependencies in segments separate from the non-dependent
portions of the schema.

¥ Schemas retain their autonomy. The developer of a dependency is
responsible for maintaining that dependency should other developers
change their database schemas.

Database Segments shall not make modifications to another segment’s database.
If a schema needs to create data objects in some schema belonging to another
segment, those objects will be placed in a database segment that modifies the
segment that will own the objects. Developers should try to avoid creating
additional indexes on another segment’s tables because of the performance
problems they can cause.

Developers will not modify the schema of another segment’s database. If
changes to table or column definitions are needed, they must be effected by the
developer of the database.

When dependencies exist they will be documented in the Requires file of the
SegDescrip directory.

The following example illustrates how dependencies are to be created and
managed. The developers of database B need to attach a trigger to a table in
database A. This trigger will feed data from A to B every time that table is
modified. Rather than include the trigger as part of B’s Application Server
Segment, it is put into a separate Segment on Database A. The Inter-database
Segment is dependent on the prior installation of both database segments and is
so labeled in its Requires File.

Database Considerations

5-112 October 23, 1995 DII COE I&RTS: Rev 2.0

Figure 5-15 Inter-Database Dependencies

Database A
Database
Segment

Database B
Database
Segment

Database A
Dependent Segment
(developed by B)

Dependencies in Requires File

